Bone marrow hemogenic endothelial cells contribute multilineage hematopoietic progenitors in adult mice

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment

    The study proposed hemogenic endothelium in adult BM using lineage tracing. Though the study is potentially valuable, the data is incomplete due to the lack of control and insufficient analysis. There is potential for the study to be improved by further revision.

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

During development, hematopoietic stem/progenitor cells (HSPCs) originate from a subset of hemogenic endothelial cells (ECs) through a process of endothelial-to-hematopoietic transition (EHT). This process is temporally restricted to short developmental windows and generates HSPC with distinct capabilities for hematopoiesis. Although it is generally thought that adult hematopoiesis is sustained by HSCs derived from hemogenic endothelium during development, some observations point to EHT persistence in the late fetus/perinatally. Here we use lineage tracking and bioinformatics analysis to assess the presence of hemogenic endothelial cells in the adult mouse. Our analysis identifies a subset of bone marrow-resident adult endothelial cells, characterized by the expression of VE-Cadherin and the transcription factor RUNX1, that produce CD45 + hematopoietic cells. This EHT generates hematopoietic progenitors, and mature myeloid and lymphoid cells in the adult mouse. Our results reveal the identification of a distinct source of adult blood.

Article activity feed

  1. eLife Assessment

    The study proposed hemogenic endothelium in adult BM using lineage tracing. Though the study is potentially valuable, the data is incomplete due to the lack of control and insufficient analysis. There is potential for the study to be improved by further revision.

  2. Reviewer #1 (Public review):

    Summary:

    This manuscript by Feng et al. uses mouse models to study the embryonic origins of HSPCs. Using multiple types of genetic lineage tracing, the authors aimed to identify whether BM-resident endothelial cells retain hematopoietic capacity in adult organisms. Through an important mix of various labeling methodologies (and various controls), they reach the conclusion that BM endothelial cells contribute up to 3% of hematopoietic cells in young mice.

    Strengths:

    The major strength of the paper lies in the combination of various labeling strategies, including multiple Cdh5-CreER transgenic lines, different CreER lines (col1a2), and different reporters (ZsGreen, mTmG), including a barcoding-type reporter (PolyLox). This makes it highly unlikely that the results are driven by a rare artifact due to one random Cre line or one leaky reporter. The transplantation control (where the authors show no labeling of transplanted LSKs from the Cdh5 model) is also very supportive of their conclusions.

    Weaknesses:

    We believe that the work of ruling out alternative hypotheses, though initiated, was left incomplete. We specifically think that the authors need to properly consider whether there is specific, sparse labeling of HSPCs (in their native, non-transplant, model, in young animals). Polylox experiments, though an exciting addition, are also incomplete without additional controls. Some additional killer experiments are suggested.

  3. Reviewer #2 (Public review):

    Summary:

    Feng, Jing-Xin et al. studied the hemogenic capacity of the endothelial cells in the adult mouse bone marrow. Using Cdh5-CreERT2 in vivo inducible system, though rare, they characterized a subset of endothelial cells expressing hematopoietic markers that were transplantable. They suggested that the endothelial cells need the support of stromal cells to acquire blood-forming capacity ex vivo. These endothelial cells were transplantable and contributed to hematopoiesis with ca. 1% chimerism in a stress hematopoiesis condition (5-FU) and recruited to the peritoneal cavity upon Thioglycolate treatment. Ultimately, the authors detailed the blood lineage generation of the adult endothelial cells in a single cell fashion, suggesting a predominant HSPCs-independent blood formation by adult bone marrow endothelial cells, in addition to the discovery of Col1a2+ endothelial cells with blood-forming potential, corresponding to their high Runx1 expressing property.

    The conclusion regarding the characterization of hematopoietic-related endothelial cells in adult bone marrow is well supported by data. However, the paper would be more convincing, if the function of the endothelial cells were characterized more rigorously.

    (1) Ex vivo culture of CD45-VE-Cadherin+ZsGreen EC cells generated CD45+ZsGreen+ hematopoietic cells. However, given that FACS sorting can never achieve 100% purity, there is a concern that hematopoietic cells might arise from the ones that got contaminated into the culture at the time of sorting. The sorting purity and time course analysis of ex vivo culture should be shown to exclude the possibility.

    (2) Although it was mentioned in the text that the experimental mice survived up to 12 weeks after lethal irradiation and transplantation, the time-course kinetics of donor cell repopulation (>12 weeks) would add a precise and convincing evaluation. This would be absolutely needed as the chimerism kinetics can allow us to guess what repopulation they were (HSC versus progenitors). Moreover, data on either bone marrow chimerism assessing phenotypic LT-HSC and/or secondary transplantation would dramatically strengthen the manuscript.

    (3) The conclusion by the authors, which says "Adult EHT is independent of pre-existing hematopoietic cell progenitors", is not fully supported by the experimental evidence provided (Figure 4 and Figure S3). More recipients with ZsGreen+ LSK must be tested.

    Strengths:

    The authors used multiple methods to characterize the blood-forming capacity of the genetically - and phenotypically - defined endothelial cells from several reporter mouse systems. The polylox barcoding method to trace the adult bone marrow endothelial cell contribution to hematopoiesis is a strong insight to estimate the lineage contribution.

    Weaknesses:

    It is unclear what the biological significance of the blood cells de novo generated from the adult bone marrow endothelial cells is. Moreover, since the frequency is very rare (<1% bone marrow and peripheral blood CD45+), more data regarding its identity (function, morphology, and markers) are needed to clearly exclude the possibility of contamination/mosaicism of the reporter mice system used.