Contrast Subgraphs Allow Comparing Homogeneous and Heterogeneous Networks Derived from Omics Data

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Biological networks are often used to describe the relationships between relevant entities, in particular genes and proteins, and are a powerful tool for functional genomics. Many important biological problems can be investigated by comparing biological networks between different conditions, or networks obtained with different techniques. We show that contrast subgraphs, a recently introduced technique to identify the most important structural differences between two networks, provide a versatile tool for comparing gene and protein networks of diverse origin. We show in three concrete examples how contrast subgraphs can provide new insight in functional genomics by extracting the gene/protein modules whose connectivity is most altered between two conditions or experimental techniques.

Article activity feed

  1. identify

    Reviewer name: Raul Guantes (Revision 1)

    In the revised version and the response letter, the authors have clarified all the questions and addressed the comments raised in my previous report, and I think the manuscript is now suitable for publica

  2. entities

    Reviewer name: Thomas Schlitt

    The manuscript "contrast subgraphs allow comparing homogeneous and hetereogeneous networks derived from omics data" introduces and illustrates the application of contrast subgraph analysis to gene expression, protein expression and protein-protein interaction data. The method can be applied to weighted networks. The authors give a good description of the method and the context of other available methods.The authors apply the contrast subgraph analysis to three different omics data sets - overall these analysis are not very detailed and do not yield surprising results but they provide a nice illustration of the potential usefulnes of the contrast subgraph analysis in the context of omics data. To my opinion this is really where the merit of the paper is: to promote and make accessible the method to a wider audience of researchers in the field of bioinformatics/molecular biology. The authors have also applied their method to brain imaging derived networks, but that work is not part of this publication.The contrast subgraph analysis is particularly interesting, for data that is collected under different conditions but for the same set of nodes (i.e. genes, proteins, ...), i.e. where the nodes present do not change (much), but their interaction strengths differes between conditions. It remains to be seen where this method can deliver unique value that is not achievable by other means, but the approach is very intuitive. Its rationale can be readily understood, reducing the temptation to use it as a "black box" without critically questioning the results as might be the case for more complex methods. One of the downsides of the presented approach is that it does not provide any measures of confidence in the results - while there is a parameter >alpha< that allows some tuning, little information is given on how to choose a suitable value for this parameter (which obviously depends on the data). Another issue that might come a little too short is how to derive graph representations from experimental omics data in the first place. Usually these methods do not yield yes/no answers, but rather we obtain a matrix of pairwise measurements (e.g. correlation of coexpression) and to obtain a graph a threshold on these numbers is applied to obtain an edge or not. Various methods have been proposed to choose thresholds, but in the end, moving from a full matrix to graph representation means loosing some information - it would be interesting to see a deeper analysis on how much this thresholding influences the outcomes of the proposed method - this question is obviously linked to obtaining some confidence information on the results.Overall, the method described here is very interesting, it shares downsides with other graph based methods (thresholding), the biological examples given are brief, but illustrative for the use of the method, the manuscript is well readable. The manuscripts stimulates to add this method to your own toolbox and to apply it to interesting data sets to see if it yields results that were not obvious from other approaches.Minor comments:-figure captions esp 1-3 - please provide more information in the figure captions to make the figures "readable" on their own without a need for the reader to refer back to the text; figure captions for Fig 1-3 are almost identical, yet very different data is shown - a clear indication that important information is missing in the figure caption - such as what is the underlying data?Please explain all terms used in the figure in its caption: here what is "GeneRatio"? Figs A/B what is the x-axis showing for the violin plots?-figure 3c and para on Protein vs mRNA coexpression (p2-5) - are the differences really that striking - in 3C, the box plots do not look that different, super low p-values are probably due to very large number of data points, but not sure it is really that meaningful here (effect size?)-figure 4 is too small, nodes are barely visible, colours cannot be distinguished-algorithm 1 and description in text - I would probably move the description of the algorithm from the text to a "figure caption" for the algorithm box, to make it easier for the reader to find the definitions of the terms.

  3. Biological

    Reviewer name: Raul Guantes

    In this manuscript the authors apply the method of contrast subgraphs (developed among others by some of the authors), that identifies salient structural differences between two networks with the same nodes, to several biological co-expression and PPI networks. This method adds to the extensive toolkit of network analyses that have been used in the last two decades to extract useful biological information from omics data. In particular, the authors identify subgraphs containing maximum differences in connectivity between two networks, and basically use functional annotations to assign biological meaning to these differences. Of note, contrast subgraphs is not the only method that provides 'node identity awareness' when comparing networks. For instance, identification of network modules or community partitions are common methods to identify groups of nodes that highlight potentially relevant structural differences between two networks, and have been applied to many biological and other types of networks.I find the manuscript well motivated and clearly written in general, but lacking detailed information on part of the Methods. The discussion connecting their findings on structural differences between networks to potential biological functions is also a bit vague and could be worked out in more detail. I feel that the paper is potentially acceptable in GigaScience after a revision to provide more details on the methods and on their findings. Here are my comments:Methods:1.- Coexpression networks for luminal and basal cancer subtypes:1a.- The authors don't give enough information about the data they are using to build these networks. How many samples/points are they using to calculate correlations? Do they correspond to different patients, expression dynamics after some treatment…? Is there any preprocessing in the data (e.g. differential expression with respect to healthy tissue) or they just take all quantified transcripts and proteins with minimal filtering (they only specified that filter out genes with FPKM < 1 in more than 50 samples in transcriptomic data)? How many nodes and links have the final coexpression networks?.1b.- To determine links between genes/proteins they calculate Spearman rho and transform it to (0.5(1+rho)^12 to give a 'signed' network. But since Spearman correlation ranges between +1 and -1, this transformed quantity lies between 0 and 1, so I don't see the sign. Moreover, why the exponent 12 in the transformation??. Please clarify because I don't know if they are analyzing just weighted networks, unweighted networks or signed networks in the end because somehow they 'keep track' of the sign of rho. They spend some space in Methods discussing the extension of the contrast subgraph method to sign networks, but I don't know if they finally apply it, since coexpression networks built in this way and PPI networks are not signed.1c.- Do they keep all links or use some cutoff in rho by magnitude/significance? Presumably yes, because otherwise the final network would be a clique and unmanageable, but they don't give any info on that. Again, which is the final size (node/links) of the coexpression networks?1d.- As for coexpression networks based on relative abundance data as those from transcriptomic/proteomic experiments, it is well known that correlations may be misleading due to the possible large number of spurious correlations (see for instance Lovell at al., PLoS Computational Biology 11(3) (2015) e1004075). The use of correlations requires some justification, and at least to acknowledge the potential pitfalls of this measure.1e.- How many nodes/links are in the first contrast subgraphs shown in Figures 1-2? Is the degree calculated within the whole network or just within the extracted subgraph?1f.- Page 4, last paragraph before 'Protein vs mRNA coexpression in breast cancer' section: 'the results obtained with the two independent breast cancer cohorts show good agreement, with the top differential subgraphs significantly overlapping for both the basal-like and the luminal-A subtypes (Fisher test p < 2.2 · 10-16)'. I guess the overlapping is in terms of functional annotations, how is this overlapping and the corresponding statistical test calculated?.2.- Protein versus mRNA coexpression:2a.- Please provide again information about the number of samples, how the 'subset of breast cancer patients included in the TCGA' is chosen and if transcriptome and proteome are quantified in the same conditions (relevant if one is directly to compare both networks). Provide also details about the number of link/nodes of each subnetwork and corresponding subgraph. Since transcriptomic data are provided usually in FPKM and proteomic in counts (sum of normalized intensities of each ion channel), are data further normalized to facilitate their comparison?3.- PPI networks:3a.- Since they are going to compare PPIs about different 'contexts', a brief explanation about the tissue origin and peculiarities of the three cell lines investigated is in order.3b.- Please provide details about number of proteins/interactions in the contrast subgraphs obtained from the comparisons of the three cell lines. Since these subgraphs are going to be compared to RNA expression data from a different dataset, please specify if these data are obtained from the same cell lines. Why PPI data are compared only to upregulated genes? (and not to up-down regulated). Also, concerning the criterion for 'upregulation' (logFC>1), is this log base 2?. How do they quantify the overlap between proteins in PPI and upregulated genes? They just state that 'did indeed significantly overlap the corresponding up-regulated genes'. How much is the overlap and what does 'significantly' mean?3c.- Discussion of the results shown in Figure 4 is not clear to me. First, the authors state 'We thus analyzed in more depth the first contrast subgraphs obtained from the comparison of the HEK293T PPI network with those obtained from the other two cell lines'. Does this mean that they analyze four subgraphs (2 for HEK vs. HUVEC and 2 for HEK vs. Jurkat?. When they say that the 'top contrasts subgraphs were identical', do they mean that the four subgraphs contained exactly the same nodes?. Also, in main text Figure 4 seems to contain the subnetwork of these subgraphs with only the nodes annotated as 'ribosome biogenesis' and 'signal transduction through p53', and the links would be the PPIs. But in the caption to Figure 4 they state that 'green edges join proteins involved in the two biological processes' (probably a subset of the PPIs). Please clarify. Why do they give only the comparison between HEK and HUVEC, and not between HEK and Jurkat if the same nodes are present?Interpretation of results:1.- Coexpression networks in two cancer subtypes: they find that the subgraph with the stronger connections in the basal subtype is enriched in 'immune response' and the subgraph denser in the luminal subtype is enriched in categories related to microenvironment regulation. If they identify clearly enriched genes they should discuss in more depth their known roles in connection to these two functions in their biological context. This would enrich and support their findings. It is tempting to speculate that, since the basal type is less aggressive, cancer cells are challenged by the immune system of the organism but, once they developed mechanisms to evade the immune system (becoming more aggressive as in the luminal subtype) they are committed to manipulate their microenvironment to proliferate. Are there any evidences for this in these subtypes of cells?2.- Comparison of transcriptomic and proteomic networks: From their analyses in Figure 3 they claim in the Discussion that 'adaptive immune system genes are more connected at the transcriptional level, while innate immune systems are more connected at the proteomic level'. This is a rather vague statement based on the functional enrichment analysis. First, they should identify and discuss in more detail the genes/proteins responsible for this enrichment, to see if their documented function supports their speculations (and since the data they use are from breast cancer, I don't know how general could be this observation of if it is specific of this type of tumor). Moreover, caution should be exerted when interpreting these coexpression networks: the most connected transcripts are not necessarily those who are being simultaneously translated. Also, since apparently the network is not signed the abundance of connected transcripts may be anticorrelated. Finally, Figure 3 is not clear: which panel corresponds to the transcriptomic subgraph and which one to the proteomic one? This should be specified in the caption or with titles in the panel.Minor comments:- The distinction between 'heterogeneous' and 'homogeneous' networks in the Introduction is a bit confusing, as they classify mRNA and protein coexpression networks as 'heterogeneous'. Why is that? Is that because they are built from many different samples/individuals or time course data?.- Although I have nothing against how the authors display differences between the first contrast subgraphs in panels A-B of Figures 1 and 2, it may be more eye-catching to display these differences as usual boxplots or violin plots, with perhaps the test for significant differences between the means of both degree distributions.

  4. Abstract

    This work has been peer reviewed in GigaScience (see paper https://doi.org/10.1093/gigascience/giad010), which carries out open, named peer-review. These reviews are published under a CC-BY 4.0 license and were as follows:

    Reviewer name: De-Shuang Huang

    The authors proposed an algorithm based on contrasting subgraphs to characterize the biological networks, so as to analyze the specificity and conservation between different samples. It is interesting and I think there are some problems that need to be clarified.1, Sub-graphs are generated by dividing the whole graph in a certain way, and the similarity and difference of the samples are described by the comparison between the sub-graphs. The authors should discuss the advantages of the proposed approach in a non-heuristically way compared with the previous methods. Besides that, I wonder why subgraphs need to be non-overlapping.2, For TCGA or other databases, I think the authors should state the details of the samples, such as the number of samples, sequencing technology, batch effects, etc. In addition, the authors should describe the relationship between the subgraphs and GO modules to explain the results and draw some biological conclusions.3, The authors performed a similar analysis on protein networks and compared the results with RNA-seq, and get some conclusions. I'm a little confused whether the GO enrichment analysis of proteomics is to map the protein ID to the gene ID. If so, the authors can easily combine transcript co-expression and protein co-expression networks through ID-to-ID mapping, and I look forward to the results of such an analysis.4, I would like to know how the proposed method handles heterogeneous graphs by treating heterogeneous graphs as Homogeneous graph to generate subgraphs? I didn't figure out which dataset is the heterogeneous graph scenario.5, In addition to the elaboration of results such as degree and density differences between subgraphs, I would like to see the relationships between these results and the biological problems.6, Authors may consider citing the following articles on networks in molecular biologyBarabasi A L, Oltvai Z N. Network biology: understanding the cell's functional organization[J]. Nature reviews genetics, 2004, 5(2): 101- 113.Zhang, Q., He, Y., Wang, S., Chen, Z., Guo, Z., Cui, Z., ... & Huang, D. S. (2022). Base-resolution prediction of transcription factor binding signals by a deep learning framework[J]. PLoS computational biology, 2022, 18(3): e1009941.Hu J X, Thomas C E, Brunak S. Network biology concepts in complex disease comorbidities[J]. Nature Reviews Genetics, 2016, 17(10): 615-629.Z.-H. Guo, Z.-H. You, Y.-B. Wang, D.-S. Huang, H.-C. Yi, and Z.-H. Chen, "Bioentity2vec: Attribute-and behavior-driven representation for predicting multi-type relationships between bioentities." GigaScience 9.6 (2020): giaa032.Z.-H. Guo, Z.-H. You, D.-S. Huang, H.-C. Yi, K. Zheng, Z.-H. Chen, Y.-B. Wang, MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm[J]. Briefings in bioinformatics, 2021, 22(2): 2085-2095.