Obox4 promotes zygotic genome activation upon loss of Dux

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This study presents an important finding that Obox4 and Dux act redundantly in regulating zygotic genome activation in mice. The evidence supporting the claims of the authors is solid. The work will be of interest to researchers interested in early embryo development and epigenetic reprogramming.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Once fertilized, mouse zygotes rapidly proceed to zygotic genome activation (ZGA), during which long terminal repeats (LTRs) of murine endogenous retroviruses with leucine tRNA primer (MERVL) are activated by a conserved homeodomain-containing transcription factor, DUX. However, Dux -knockout embryos produce fertile mice, suggesting that ZGA is redundantly driven by an unknown factor(s). Here we present multiple lines of evidence that the multicopy homeobox gene, Obox4 , encodes a transcription factor that is highly expressed in mouse 2-cell embryos and redundantly drives ZGA. Genome-wide profiling revealed that OBOX4 specifically binds and activates MERVL LTRs as well as a subset of murine endogenous retroviruses with lysine tRNA primer (MERVK) LTRs. Depletion of Obox4 is tolerated by embryogenesis, whereas concomitant Obox4 / Dux depletion markedly compromises embryonic development. Our study identified OBOX4 as a transcription factor that provides genetic redundancy to pre-implantation development.

Article activity feed

  1. Author response;

    Reviewer #1 (Public Review):

    Authors investigated the role of OBOX4 in the zygotic genome activation (ZGA) in mice. Obox4 genes form an array of duplicated genes they were identified as a candidate ZGA factor based on expression patterns during early development. The role of OBOX4 was subsequently studied in embryonic stem cells and early embryos. It was found that transcriptional activation mediated by OBOX4 has similar features as that of DUX, which was previously identified as a zygotic transcription factor involved in ZGA and a major activator of the zygotic expression program. It was, however, unexpected that Dux knock-out did not impair embryonic development. The work by Guo et al. provides several lines of evidence that OBOX4-mediated activation of gene expression considerably overlaps with that of DUX and this redundancy might explain the loss of early developmental phenotype in Dux mutants. Consistent with this model, double mutants of Obox4 and Dux show impaired development. Given the difficulties with investigating details of the genetic model in double mutants at the preimplantation embryo stage, authors not only crossed genetic mutants, but also used (1) nuclear transfer of mutated nuclei of ESCs, which could be characterized on their own in separate experiments, and (2) antisense oligonucleotides (ASO) microinjection, which included a rescue control demonstrating that reintroducing OBOX4 is sufficient to rescue the phenotype caused by blocking both, Dux and Obox4.

    This work is important for the field because it reveals functional redundancy and plasticity of the zygotic genome activation in mammals, where the mouse model stands as a remarkable example of genome activation, which massively integrated long terminal repeat (LTR)-derived enhancers from retrotransposons and now two of the key activating zygotic factors appear to be encoded by tandemly duplicated clusters of different phylogenetic age. Identification of OBOX4 as a second factor partially redundant with DUX now allows us to decipher what constitutes the essential part of the ZGA program.

    We are grateful for the reviewer’s appreciation of our work, particularly the technical difficulty of knocking out two multicopy genes and the value of the rescue experiment.

    Reviewer #2 (Public Review):

    In this study, Guo et al., screened a few homeobox transcription factors and identified that Obox4 can induce the 2-cell like state in mouse embryonic stem cells (mESCs) (Fig. 1 and 2). The authors also compared in detail how Obox4 vs. Dux in activating 2C repeats and genes in mESCs (Fig. 3). Compared to Dux, Obox4 activates fewer 2C genes (Fig. 2). In addition, although both Obox4 and Dux bind to MERVL elements, Obox4 additionally binds to ERVK (Fig. 3). The authors then used three different approaches (i.e., SCNT-mediated KO, ASO-mediated KD, and genetic KO) to study how Obox4 and Dux regulates zygotic genome activation in embryos. Although there are some inconsistencies among different approaches, the authors were able to show that loss of both Obox4 and Dux causes more severe consequences than loss of single protein in embryonic development and zygotic genome activation (Fig. 4 and 5).

    Overall, this is a comprehensive study that addresses an important question that puzzles the community. However, some comparisons to the recent work by Ji et al (PMID: 37459895) are highly recommended. Ji et al knocked out the entire Obox cluster (including Obox4) in mice and found that Obox cluster KO causes 2-4 cell arrest without affecting Dux. That said, Obox proteins seem more critical than Dux in regulating ZGA, and Obox cluster KO cannot be compensated by Dux. Ji et al., also reported that maternal (Obox1, 2, 5, 7) and zygotic (Obox3, 4) Obox proteins redundantly regulate embryogenesis because loss of either is compatible to development. Consistent with Ji's work, Obox4 KO embryos generated in this study can develop to adulthood and are fertile. Since these two studies are highly relevant, some comparisons of Obox4 KO and Obox4/Dux DKO with the previous Obox cluster KO will greatly benefit the community.

    We thank the reviewer for appreciating the value of our study. We are aware of the work done to high standard by Ji et al. and have included a comparison between our data and the data by Ji et al. in the revised manuscript. Despite repeated attempts, various crossing strategies failed to produce Obox4KO/DuxKO mating pairs that could be used to produce large number of Obox4KO/DuxKO embryos required for in-depth transcriptome analysis. Based on the quality of the RNA-seq, we decided to perform comparative analysis using our ASO KD data and showed that Obox4 has distinct regulatory targets from those of other Obox family members, which is consistent with the phylogenetic distance within the family.

  2. eLife assessment

    This study presents an important finding that Obox4 and Dux act redundantly in regulating zygotic genome activation in mice. The evidence supporting the claims of the authors is solid. The work will be of interest to researchers interested in early embryo development and epigenetic reprogramming.

  3. Reviewer #1 (Public Review):

    Authors investigated the role of OBOX4 in the zygotic genome activation (ZGA) in mice. Obox4 genes form an array of duplicated genes they were identified as a candidate ZGA factor based on expression patterns during early development. The role of OBOX4 was subsequently studied in embryonic stem cells and early embryos. It was found that transcriptional activation mediated by OBOX4 has similar features as that of DUX, which was previously identified as a zygotic transcription factor involved in ZGA and a major activator of the zygotic expression program. It was, however, unexpected that Dux knock-out did not impair embryonic development. The work by Guo et al. provides several lines of evidence that OBOX4-mediated activation of gene expression considerably overlaps with that of DUX and this redundancy might explain the loss of early developmental phenotype in Dux mutants. Consistent with this model, double mutants of Obox4 and Dux show impaired development. Given the difficulties with investigating details of the genetic model in double mutants at the preimplantation embryo stage, authors not only crossed genetic mutants, but also used (1) nuclear transfer of mutated nuclei of ESCs, which could be characterized on their own in separate experiments, and (2) antisense oligonucleotides (ASO) microinjection, which included a rescue control demonstrating that reintroducing OBOX4 is sufficient to rescue the phenotype caused by blocking both, Dux and Obox4.

    This work is important for the field because it reveals functional redundancy and plasticity of the zygotic genome activation in mammals, where the mouse model stands as a remarkable example of genome activation, which massively integrated long terminal repeat (LTR)-derived enhancers from retrotransposons and now two of the key activating zygotic factors appear to be encoded by tandemly duplicated clusters of different phylogenetic age. Identification of OBOX4 as a second factor partially redundant with DUX now allows us to decipher what constitutes the essential part of the ZGA program.

  4. Reviewer #2 (Public Review):

    In this study, Guo et al., screened a few homeobox transcription factors and identified that Obox4 can induce the 2-cell like state in mouse embryonic stem cells (mESCs) (Fig. 1 and 2). The authors also compared in detail how Obox4 vs. Dux in activating 2C repeats and genes in mESCs (Fig. 3). Compared to Dux, Obox4 activates fewer 2C genes (Fig. 2). In addition, although both Obox4 and Dux bind to MERVL elements, Obox4 additionally binds to ERVK (Fig. 3). The authors then used three different approaches (i.e., SCNT-mediated KO, ASO-mediated KD, and genetic KO) to study how Obox4 and Dux regulates zygotic genome activation in embryos. Although there are some inconsistencies among different approaches, the authors were able to show that loss of both Obox4 and Dux causes more severe consequences than loss of single protein in embryonic development and zygotic genome activation (Fig. 4 and 5).

    Overall, this is a comprehensive study that addresses an important question that puzzles the community. However, some comparisons to the recent work by Ji et al (PMID: 37459895) are highly recommended. Ji et al knocked out the entire Obox cluster (including Obox4) in mice and found that Obox cluster KO causes 2-4 cell arrest without affecting Dux. That said, Obox proteins seem more critical than Dux in regulating ZGA, and Obox cluster KO cannot be compensated by Dux. Ji et al., also reported that maternal (Obox1, 2, 5, 7) and zygotic (Obox3, 4) Obox proteins redundantly regulate embryogenesis because loss of either is compatible to development. Consistent with Ji's work, Obox4 KO embryos generated in this study can develop to adulthood and are fertile. Since these two studies are highly relevant, some comparisons of Obox4 KO and Obox4/Dux DKO with the previous Obox cluster KO will greatly benefit the community.