Single-cell glycomics analysis by CyTOF-Lec reveals glycan features defining cells differentially susceptible to HIV

Curation statements for this article:
  • Curated by eLife

    eLife logo

    Evaluation Summary:

    This study applies a new novel method of single cell detection to biologically relevant systems to try to understand whether glycans on the surface of CD4+T cells impact HIV susceptibility. They find that cells expressing higher levels of fucose and sialic acid are more likely to be infected with to HIV than those with low levels. The findings point to glycans as a biomarker and potential determinant for HIV cells susceptibility and open the door to new avenues for studies the interplay between cell surface glycans and viral infections.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. Reviewer #1 agreed to share their name with the authors.)

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

High-parameter single-cell phenotyping has enabled in-depth classification and interrogation of immune cells, but to date has not allowed for glycan characterization. Here, we develop CyTOF-Lec as an approach to simultaneously characterize many protein and glycan features of human immune cells at the single-cell level. We implemented CyTOF-Lec to compare glycan features between different immune subsets from blood and multiple tissue compartments, and to characterize HIV-infected cell cultures. Using bioinformatics approaches to distinguish preferential infection of cellular subsets from viral-induced remodeling, we demonstrate that HIV upregulates the levels of cell-surface fucose and sialic acid in a cell-intrinsic manner, and that memory CD4+ T cells co-expressing high levels of fucose and sialic acid are highly susceptible to HIV infection. Sialic acid levels were found to distinguish memory CD4+ T cell subsets expressing different amounts of viral entry receptors, pro-survival factors, homing receptors, and activation markers, and to play a direct role in memory CD4+ T cells’ susceptibility to HIV infection. The ability of sialic acid to distinguish memory CD4+ T cells with different susceptibilities to HIV infection was experimentally validated through sorting experiments. Together, these results suggest that HIV remodels not only cellular proteins but also glycans, and that glycan expression can differentiate memory CD4+ T cells with vastly different susceptibility to HIV infection.

Article activity feed

  1. Evaluation Summary:

    This study applies a new novel method of single cell detection to biologically relevant systems to try to understand whether glycans on the surface of CD4+T cells impact HIV susceptibility. They find that cells expressing higher levels of fucose and sialic acid are more likely to be infected with to HIV than those with low levels. The findings point to glycans as a biomarker and potential determinant for HIV cells susceptibility and open the door to new avenues for studies the interplay between cell surface glycans and viral infections.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. Reviewer #1 agreed to share their name with the authors.)

  2. Reviewer #1 (Public Review):

    Ma et al take a novel approach to an important problem of host cell susceptibility to HIV. They tackle an understudied area of glycan effects on HIV infection using a new method they developed called CyTOF-lec. This method allows single cell detection of infected cells when using a reporter virus for infection. Importantly, the authors go to considerable trouble to use biologically relevant systems, including a transmitted virus and tonsil, endometrial and peripheral T cells. They find that cells expressing higher levels of fucose and sialic acid are more likely to be infected with to HIV than those with low levels. The studies presented here suggest, although didn't fully resolve, that sialic acid itself may be important for infection in CD4, CCR5 positive cells, although they can't really rule out that sialic acid is simply a biomarker for other cell features, such as activation state and entry receptor levels, which are known to impact susceptibility to HIV. Nonetheless, the findings point to glycans as a biomarker and potential determinant for HIV cells susceptibility and open the door to new avenues for studies of the interplay between cell surface glycans and viral infections.

  3. Reviewer #2 (Public Review):

    In this manuscript by Ma et al., the authors develop a mass cytometry that includes 5 heavy metal conjugated lectins. After some validation of this panel, the authors use the panel to analyze human PBMCs, tonsils and endometrial CD4 T cells before and after infection with an HIV virus with HSA reporter tag. They found that HIV infection was associated with higher levels of staining with 4 out of 5 lectins (sialic acid and fucose binders). Using the PP-SLIDE algorithm they previously developed, and they predicted that HIV preferentially infected higher cells with higher lectin binding and led to an increase in staining after infection. To validate this hypothesis, sorting of high vs. low lectin staining cells was performed to show that cells with higher lectin staining also had higher rates of HIV infection. They also used sialidase to reduce sialic acid levels and showed that it reduced HIV infection in PBMCs from two different donors. In addition to the development, validation and demonstration of mass cytometry lectin staining, the finding that glycosylation can influence HIV infectivity is novel and could open up new avenues for investigation. I think this work will be generally useful to the mass cytometry and HIV communities.