Firing patterns of ventral hippocampal neurons predict the exploration of anxiogenic locations

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This paper is expected to be of interest to systems neuroscientists in the fields of emotion, hippocampal function, and anxiety-related behavior. The authors performed recordings in ventral hippocampus and show that 1) place fields become concentrated near the open areas of a maze, 2) direction-dependent coding decreases in these open areas, and 3) ventral hippocampal population activity in the closed area can be used to predict how mice explore the open area in the immediate future. These valuable findings support a potential role for the ventral hippocampus in the exploration of anxiety-provoking environments, however, the manuscript in its current form is incomplete, with some support for the main findings but also some limitations.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The ventral hippocampus (vH) plays a crucial role in anxiety-related behaviour and vH neurons increase their firing when animals explore anxiogenic environments. However, if and how such neuronal activity induces or restricts the exploration of an anxiogenic location remains unexplained. Here, we developed a novel behavioural paradigm to motivate rats to explore an anxiogenic area. Male rats ran along an elevated linear maze with protective sidewalls, which were subsequently removed in parts of the track to introduce an anxiogenic location. We recorded neuronal action potentials during task performance and found that vH neurons exhibited remapping of activity, overrepresenting anxiogenic locations. Direction-dependent firing was homogenised by the anxiogenic experience. We further showed that the activity of vH neurons predicted the extent of exploration of the anxiogenic location. Our data suggest that anxiety-related firing does not solely depend on the exploration of anxiogenic environments, but also on intentions to explore them.

Article activity feed

  1. eLife assessment

    This paper is expected to be of interest to systems neuroscientists in the fields of emotion, hippocampal function, and anxiety-related behavior. The authors performed recordings in ventral hippocampus and show that 1) place fields become concentrated near the open areas of a maze, 2) direction-dependent coding decreases in these open areas, and 3) ventral hippocampal population activity in the closed area can be used to predict how mice explore the open area in the immediate future. These valuable findings support a potential role for the ventral hippocampus in the exploration of anxiety-provoking environments, however, the manuscript in its current form is incomplete, with some support for the main findings but also some limitations.

  2. Reviewer #1 (Public Review):

    Summary:

    It is widely known that lesioning the vHP produces anxiogenic effects, and cells in the vHP increase their firing rates in the anxiogenic location. This paper aims to investigate the neural dynamics of the vHP when a non-anxiogenic location changes to an anxiogenic one during spatial navigation. For testing, the authors removed half of the side walls of the elevated linear maze or track in the middle of the session. They reported that cells in the vHP remapped and overrepresented anxiogenic places as the walls were removed. Also, the authors claim that single-cell activities recorded before entering the open portion of the track could be used to predict how far the rat would explore along the open segment of the track.

    Strength and weakness:

    The experimental paradigm was well-designed to examine the main research question. It is novel in that the authors recorded single cells electrophysiologically in the vHP, as this has been done only in very few studies. However, in the current version of the manuscript, the main argument (tied to Figure 5) is not supported by detailed neural and behavioral data. Specifically, the authors did not provide the basic firing properties of the electrophysiological data to verify the quality of single-cell recording data. Also, they did not compare the velocity and position data before entering the open arm between the proximal and distal exploration. Thus, it is hard to reject the alternative hypothesis that the difference in neural activities between the exploration types stems from behavioral differences, not necessarily based on prediction signals.

    Significance of the work:

    This study should contribute to the single-cell-level understanding of the vHP with only very few experimental data available in the literature on the topic. Since some of the previous studies that claimed to record the ventral hippocampus actually targeted the intermediate portion of the hippocampus, this study would set a new standard for investigating the true ventral hippocampus.

  3. Reviewer #2 (Public Review):

    The authors examined the neural activity of the ventral hippocampus (vH) during exploration of anxiogenic environments. They first recorded vH neuronal activity when animals explored the elevated plus maze (EPM). Although they observed that peak firing activity increased when rats explored anxiogenic locations, this effect was difficult to quantify since rats did not often explore these locations. In order to resolve this issue, they developed a novel type of elevated linear maze (ELM). In the anxiogenic location of the ELM, they observed anxiety-related neuronal activity and demonstrated that the direction-dependent activity of vH neurons became homogenized. Additionally, the authors demonstrated that the activity of the vH neurons reflected and predicted, using a support vector machine (SVM), the exploration of an anxiogenic location, suggesting that vH neurons do not only code for anxiogenic environments, but also may reflect the intention to explore anxiogenic locations.

    Strength:
    S1. In their study, the authors introduced a modified ELM task that can instantly reconfigure side walls in the anxiogenic environment while rats are being recorded on the maze. This method was intended to overcome the low-sampling issue observed in the anxiogenic environments where animals usually avoid entering. In fact, this modification allowed them to study between non-anxiogenic and anxiogenic conditions within the same maze and in a single recording session.

    S2. Also, it is known that recording large number of cells from vH has been quite challenging in the field. The authors successfully examined more than 130 neurons from the vH area across six rats and determined remapping effect when animals were exposed to the anxiogenic environment.

    S3. The authors tried to examine the neural population carefully to exclude any other factors to focus solely on the effect of anxiety, although it has been shown that abrupt changes in the environment can cause the hippocampus to remap.

    Weakness:
    Despite the fact that the authors are trying to answer potentially important and intriguing questions in the anxiety field, some important details are missing from their description of the data.

    W1. It is remarkable and impactful that the authors found that the vH neurons overrepresent, remap, and lose directionality under anxiogenic conditions. Conceptually, such dramatic changes as well as prospective biased memory 'replays' have been reported in the dorsal hippocampus under anxiogenic task settings, such as using electrical foot shocks, for example, Wu et al, Nat.Neuro, 2017. Also, another paper (Girardeau et al.., 2017, Nat Neuro) reported that an aversive trajectory is more reactivated in the dorsal hippocampus.

    W2. Technically, they used tetrodes in vH and were able to collect more than 130 units, with histological data indicating that recording sites ranged from CA1 to CA3 of vH (Figure 1B). They used a semi-automated clustering method to isolate individual units but did not subdivide them into CA1, CA3 and/or pyramidal cells or interneurons. It appears that the representative examples in Figure 1C contain both pyramidal cells and interneurons, which are well characterized in terms of remapping in the dorsal area.

    W3. Readers may find Figure 5 difficult to follow. They are not intuitive to understand how to read/interpret the figure panels.

  4. Reviewer #3 (Public Review):

    The authors provide interesting data showing that ventral hippocampal (vH) cells show rapid remapping when an open area appears in the environment, displaying a concentration of place field center in the new open area. Additionally, distinct direction-dependent neural activity is lower in the open areas and activity in the closed area can be used to predict the extent of exploration in the open area.

    Though the authors provide some interesting new findings, several key classic place cell-related metrics were not evaluated, decreasing the potential impact of the work. For example, What percent of vH cells are place cells? What is are the place field size, information content, and peak and mean firing rate of open and closed preferring cells? Is there any characteristic in common among cells that show a shift in their place field towards the open space before the open space is shown? What is the stability of spatial representation of the same cell across days and across the same session?

    There are not many hippocampal remapping papers related to threat exposure, but the authors fail to cite the few relevant papers that exist. The authors should include in their discussion the results from Wang et al., 2012 and Wang et al., 2015 (PMID: 26085635 and PMID: 23136419). The authors also should discuss Kong et al., 2021 (PMID: 34533133) and Schuette et al., 2021 (PMID: 32958567). These papers have related results on hippocampal remapping during exposure to threatening environments. The absence of these papers being cited provides a misleading view that the results are more novel than they actually are when considering the relevant literature.