Nucleosome conformation dictates the histone code

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    The manuscript investigates how the tandem reader domains in BPTF co-recognize two types of modifications present on histone tails, H3K4me3 and H3 acetylation. The authors interpret their results in the context of the conformational restriction of histone tails due to interactions with nucleosomal DNA. The findings contribute new insights into how the nucleosomal context regulates the recognition of multiple histone modifications by tandem reader domains and should be of interest to the broader chromatin field.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized ‘codes’ that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the ‘histone code’ concept and interrogate it at the nucleosome level.

Article activity feed

  1. eLife assessment

    The manuscript investigates how the tandem reader domains in BPTF co-recognize two types of modifications present on histone tails, H3K4me3 and H3 acetylation. The authors interpret their results in the context of the conformational restriction of histone tails due to interactions with nucleosomal DNA. The findings contribute new insights into how the nucleosomal context regulates the recognition of multiple histone modifications by tandem reader domains and should be of interest to the broader chromatin field.

  2. Reviewer #1 (Public Review):

    The manuscript investigates the binding of PHD-BD, a tandem of reader domains in the C-terminus of BPTF, to modified histone tail peptides and nucleosomes. It focuses on the differences in binding affinity between peptide and nucleosome substrates for BPTF PHD-BD. Using the dCypher approach, they find that multi-modified peptide substrates (both acetylation and methylation) do not increase PHD-BD binding affinity. They argue that histone peptide substrates do not support the histone code model, which champions that multivalent engagement by PHD-BD with a multi-modified substrate would lead to stronger binding when compared to the engagement of each domain alone. In contrast, when using nucleosome substrates, even though the overall affinity is reduced, the affinity for H3K4me3triac (double modification) is tighter than either modification on its own. This is consistent with the histone code model.

    A strength of the manuscript is that it further delineates the contribution of each domain by again using dCypher to compare peptide and nucleosome binding of the PHD and BD domains alone, as well as tandem domain constructs where each domain has been inactivated by a point mutation (W2891A for the PHD and N3007A for the BD). PHD alone had a lower affinity for nucleosomes than peptides overall. With peptide substrates, PHD had the highest affinity for H3K4me3 and reduced affinity for H3K4me3triac; while with nucleosomes this trend was reversed. BD alone showed an affinity for acetylated H3 and H4 peptides but surprisingly was unable to bind nucleosomes. PHD requires the combination of H3K4 methylation and H3 tail acetylation for binding, and when partnered with BD, which is not able to bind nucleosomes alone, interestingly confers specificity for K14ac and K18ac. The in vivo relevance is argued using CUT&RUN analysis.

    NMR spectroscopy is further used to show that PHD-BD binds acetylated H3 in a multivalent manner while forming a unique complex with H3K4me3triac. Deleting the N-terminal A1 region of H3 abolishes the binding of PHD-BD, implying its importance for recognition. The authors also discuss a "fuzzy complex" that forms between H3 and DNA, as well as H4 and DNA, which explains the occlusion of histone tail accessibility in the nucleosome. By changing the sidechain charge, such as with PTMs, this interaction can be weakened and allow PHD in this case to bind to the modified H3 tail. Comparisons between spectra of the H4 tail, H4 tail with DNA, and the H4 tail in the nucleosome are made and used to argue for H4-DNA interactions in the nucleosome.

    The conclusions of the manuscript are very well-supported by the data and reveal a lot of insight into how the two reader domains of BPTF interact with modified nucleosomes. In many places, however, the manuscript is written more generally as if the conclusions apply in all cases (e.g. the title, abstract, and introduction) and this remains to be determined. It is also overstated that there is a belief that peptides perfectly recapitulate nucleosomes. It should also be pointed out that the nucleosomes are multi-valent and the data cannot discriminate binding of a single PHD-BD to single or multiple tails, and that the work is limited as it is using a construct of BPTF and in fact, there is at least one other reader domain involved.

  3. Reviewer #2 (Public Review):

    This manuscript by Musselman and coworkers uses a commercial library of modified histone peptides and mononucleosomes to probe the substrate specificity of the PHD-bromodomain combination of the BPTF protein. They arrive at the conclusion that BPTF preferably binds H3K4me3 and H3K18ac in the H3 tail. By using NMR with lableled H4 protein in nucleosomes they show that the H4 tail interacts with DNA, which may limit its ability to interact with BPTF. Finally, experiments in cells demonstrate that BPTF, H3K4me3, and H3K18ac occupy overlapping regions of chromatin. The authors suggest that recruitment of BPTF to specific regions of chromatin is driven by the co-binding of H3K4me3 and H3K18ac by BPTF. This study is of interest to readers interested in understanding the functions of the BPTF protein in cells.

    In this reviewer's opinion, the manuscript needs some revision and the inclusion of some missing information.

    1. The authors seem to have overlooked the fact that mononucleosome substrates have been in use for determining the substrate specificity and mechanisms of quite a few enzymes that simply do not act on peptide substrates. For example, Dot1L doesn't do anything with peptides nor does COMPASS/Set1, both of which require intact nucleosomal substrates to measure their activity in response to ubiquitylated H2B. Thus, the authors' refinement of the "histone code hypothesis" is unnecessary and overdone. I would suggest that they instead cite examples where nucleosome substrates have provided answers that cannot be obtained from peptide substrates alone. For example, extensive work from the Muir and Allis labs.

    2. Ruthenburg and Allis in Cell 2011 conducted similar experimentation and concluded that H3K4me3-H4K16ac is a modification state bound by BPTF in cells. They also showed co-localization in ChIP-seq experiments and demonstrated preferential pulldowns with BPTF and semisynthetic methylated and acetylated nucleosomes. The authors have entirely ignored these previous results in their own discussions. Readers would benefit from a side-by-side comparison of the two acetylation states to get a sense of which is a stronger interaction and why both seemingly correlate in CUTnRUN or ChIP-seq.

    3. The idea that electrostatics may modulate tail accessibility was reported by Musselman and coworkers for the H3 tail in eLife 2018. Yet the PHD domain of BPTF clearly binds H3K4me3 in nucleosomes. In light of this prior observation, the NMR experiments now with H4 tail seem repetitive and not informative regarding BPTF's bromodomain binding. Also, missing is the effect of H4K16acetylation on H4 tail dynamics, which would be pertinent to addressing the hypothesis regarding the BPTF bromodomain binding H4K16ac

    4. The NMR experiments are all undertaken with 150mM KCl with no NaCl present. While NMR experimental constraints are understandable, the authors should avoid sweeping statements from NMR experiments regarding the dynamism of histone tails in chromatin, unless specific experiments are cited/conducted to demonstrate the same in cells. Many factors may contribute to the exclusion of BPTF from modified histone tails in cells, including the binding of other reader proteins, and the precise genomic localization of these modifications vis-a-vis BPTF. The important role of anchoring proteins must also be taken into account when considering binding/non-binding of substrates by CAPs. Thus, the NMR experiments presented in the manuscript do not report on whether BPTF binds H4K16ac in cells or indeed in vitro. If the PHD domain is capable of ultimately binding the H3 tail despite the tail's fuzzy interaction with DNA, the question remains as to why the bromodomain may not do so for acetylated H4 tails?

    This manuscript reports several interesting elements regarding BPTF regulation, but as presented it is missing some key comparisons with prior information that makes it hard for readers to assess the relevance of the results presented.