scRNA-sequencing in chick suggests a probabilistic model for cell fate allocation at the neural plate border

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    The study of Thiery et al. details the heterogeneous expression of a very large number of genes presumably associated with cell fate decisions in the ectoderm at the neural plate border in early avian embryos. The authors mostly succeed in presenting their very complex strategy of data analysis in a clear way but the work is incomplete with some conceptual weaknesses in how the authors describe and interpret their results. By focusing on one of the earliest cell fate decisions in the ectoderm of a vertebrate embryo, this study will be valuable to a broad range of developmental biologists.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

The vertebrate ‘neural plate border’ is a transient territory located at the edge of the neural plate containing precursors for all ectodermal derivatives: the neural plate, neural crest, placodes and epidermis. Elegant functional experiments in a range of vertebrate models have provided an in-depth understanding of gene regulatory interactions within the ectoderm. However, these experiments conducted at tissue level raise seemingly contradictory models for fate allocation of individual cells. Here, we carry out single cell RNA sequencing of chick ectoderm from primitive streak to neurulation stage, to explore cell state diversity and heterogeneity. We characterise the dynamics of gene modules, allowing us to model the order of molecular events which take place as ectodermal fates segregate. Furthermore, we find that genes previously classified as neural plate border ‘specifiers’ typically exhibit dynamic expression patterns and are enriched in either neural, neural crest or placodal fates, revealing that the neural plate border should be seen as a heterogeneous ectodermal territory and not a discrete transitional transcriptional state. Analysis of neural, neural crest and placodal markers reveals that individual NPB cells co-express competing transcriptional programmes suggesting that their ultimate identify is not yet fixed. This population of ‘border located undecided progenitors’ (BLUPs) gradually diminishes as cell fate decisions take place. Considering our findings, we propose a probabilistic model for cell fate choice at the neural plate border. Our data suggest that the probability of a progenitor’s daughters to contribute to a given ectodermal derivative is related to the balance of competing transcriptional programmes, which in turn are regulated by the spatiotemporal position of a progenitor.

Article activity feed

  1. Author Response

    Reviewer #1 (Public Review):

    This manuscript confirms previous studies suggesting a great deal of heterogeneity of gene expression at the neural plate border in early vertebrate embryos, as neural, placodal, neural crest, and epidermal lineages gradually segregate. Using scRNA-seq, the study expands previous studies by using far larger numbers of genes as evidence of this heterogeneity. The evidence for this heterogeneity and the change in heterogeneity over time is compelling.

    Many studies have suggested that there is considerable heterogeneity of gene expression in the developing neural plate border as the neural, neural crest, placodal and epidermal lineages segregate. Although the evidence for such heterogeneity was strong, until the advent of scRNA-seq, the extent of this heterogeneity was not appreciated. By using scRNA-seq at different stages of chick development, the authors sought to characterize how this heterogeneity develops and resolves over time.

    The work is technically sound, and the level of analysis of gene expression, clustering, synexpression groups, and dynamic changes in gene modules over time is state-of-the-art. A weakness of the results as they stand now is that the conclusions of the analysis are not tested by the authors and thus, are over-interpreted. Such tests could be performed in future studies either by gain- and loss-of-function experiments or by using lineage tracing to demonstrate that the cell states the authors observe - especially the "unstable progenitors" they characterize - are biologically meaningful. The data will nevertheless be a useful resource to investigators interested in understanding the development of different cell lineages at the neural plate border.

    We thank the reviewer for the positive assessment of our work. We agree that our models will need to be tested experimentally in the future, however, this will require a substantial amount of work. We therefore opted to share our data as a resource to be used by the community.

    Reviewer #2 (Public Review):

    The study of Thiery et al. aims to elucidate how cells undergo fate decisions between neural crest and (pan-) placodal cells at the neural plate border (NPB). While several previous single-cell RNA-Seq studies in vertebrates have included neural plate border cells (e.g. Briggs et al., 2018; Wagner et al., 2018; Williams et al., 2022), these previous studies did not provide conclusive insights on cell fate decisions between neural crest and placodes, due to either the limited number of genes recovered, the limited number of cells sampled or the limited numbers of stages included. The present study overcomes these limitations by analyzing almost 18,000 cells at six stages of development ranging from gastrulation until after neural tube closure (8 somite-stage), with an average depth of almost 4000 genes/cell. Using this extensive and high-quality data set, the study first describes the timing of segregation of neural crest and placodal lineages at the NPB suggesting that at late neural fold stages (somite stage 4) most cells have decided between placodal and neural crest fates. It then identifies gene modules specific for neural crest and placodal lineages and characterizes their temporal and spatial expression. Focusing on an NPB-specific subset of cells, the study then shows that initially most of these cells co-express neural crest and placodal gene modules suggesting that these are undecided cells, which they term "border-located unstable progenitors" (BLUPs). The proportion of BLUPs decreases over time, while cells classified as placodal or neural crest cells increases, with few BLUPs remaining at late neural fold stages (and a few scattered BLUPs even at somite stage 8). Based on these findings, the authors propose a new model of cell fate decisions at the NPB (termed the "gradient border model"), according to which the NPB is not defined by a specific transcriptional state but is rather a region of undecided cells, which diminishes in size between gastrulation and neural fold stages due to more and more cells committing to a placodal or neural crest fate based on their mediolateral position (with medial cells becoming specified as neural crest and lateral cells as placodal cells).

    The study of Thiery et al. provides an unprecedentedly detailed, methodologically careful, and well-argued analysis of cell fate decisions at the NPB. It provides novel insights into this process by clearly demonstrating that the NPB is an area of indecision, in which cells initially co-express gene modules for ectodermal fates (neural crest and placodes), which subsequently become segregated into mutually exclusive cell populations. The paper is very well written and largely succeeds in presenting the very complex strategy of data analysis in a clear way. By addressing the earliest cell fate decisions in the ectoderm and one of the earliest cell fate decisions in the developing vertebrate embryo, this study will have a significant impact and be of interest to a wide audience of developmental biologists. There are, two conceptual issues raised in the paper that require further discussion.

    We thank the reviewer for the positive comments on our work and its significance; we have addressed the conceptual issues below and in the revised version of the manuscript.

    First, the authors suggest that their data resolve a conflict between two previously proposed models, the "binary competence model" and the "neural plate border model". The authors correctly describe, that the binary competence model proposed by Ahrens and Schlosser (2005) and Schlosser (2006) suggests that the ectoderm is first divided into two territories (neural and non-neural), which differ in competence, with the neural territory subsequently giving rise to the neural plate and neural crest and the non-neural territory giving rise to placodes and epidermis (sequence of cell-fate decisions: ([neural or neural crest]-[epidermal or placodal]). This model was proposed as an alternative to a "neural plate border state model", which instead suggests that initially the NPB is induced as a territory characterized by a specific transcriptional state, from which then neural crest and placodes are induced by different signals (sequence of cell fate decisions: neural-[placodal or neural crest]-epidermal) (see Schlosser, 2006, 2014). Instead in this paper, the authors contrast the binary competence model with a model they call the "neural plate border" model according to which the NPB can give rise to all four ectodermal fates with equal probability. However, I think this misses the main point of contention since all previously proposed models are in agreement that initially the neural plate border region is unspecified and can give rise to all four fates and that lineage restrictions only appear over time. "Binary competence" and "Neural plate border state" model, differ, however, in their predictions about the sequence, in which these fate restrictions occur.

    We appreciate the reviewer's thoughtful feedback, but respectfully disagree with their comment regarding the sequence of events predicted by the neural plate border (NPB) model. While the NPB model does suggest that the NPB is a transcriptionally distinct state, it does not make specific predictions about the sequence of fate decisions. Although several papers cited in the Schlosser 2006 and 2014 reviews suggest that the NPB gives rise to all four ectodermal fates, none of them (and, to the best of our knowledge, no other primary paper referring to the NPB model) specifically defines the sequence of fate specification from the NPB.

    The key points of the NPB model are that the NPB is defined by overlapping expression of early neural/non-neural markers (which is also observed in Xenopus – see Pieper et al., 2012 supplementary material), contains progenitors for all four ectodermal fates, and that this "state" exists prior to the emergence of definitive neural crest and placodal cells.

    To investigate the heterogeneity in the order of cell fate decisions at the NPB, we carried out additional pairwise co-expression analyses of forebrain, mid-hindbrain, neural crest, and placodal gene modules, which reveals multiple different hierarchies of cell fate choice depending on a cell's axial positioning, as shown in Figure 6-figure supplement 1.

    Considering these findings, we have expanded our discussion of the previously proposed binary competence and neural plate border models to highlight how neither of these models is sufficient to fully characterize the heterogeneity in cell fate decisions observed in our study. We hope this clarification will help address any concerns the reviewer may have had about the NPB model and its implications for our results.

    Second, the authors should be more careful when relating their data to the specification or commitment of cells. Questions of specification and commitment can only be tested by experimental manipulation and cannot be inferred from a transcriptome analysis of normal development. So the conclusion that the activation of placodal, neural and neural crest-specific modules in that sequence suggests a sequence of specification in the same temporal order (lines 706-709) is not justified. Studies from the authors' own lab previously showed that epiblast cells from pre-gastrula stages are specified to express a large number of NPB border markers including neural crest and panplacodal markers, when cultured in vitro (Trevers et al., 2018; see also Basch et al., 2006 for early specification of the neural crest), which is not easily reconciled with this interpretation. I am not aware of any experimental evidence that shows that a panplacodal regulatory state is specified prior to neural crest in the chick (although I may have missed this). In Xenopus, experimental studies have shown instead that neural crest is specified and committed during late gastrulation, while the panplacodal states are specified much later, at neural fold stages (Mancilla and Mayor, 2006; Ahrens and Schlosser, 2005). It may well be the case that the relative timing of neural crest and panplacodal specification is different between species (and such easy dissociability may even be expected from the perspective of the binary competence model).

    We very much agree with the reviewer that the definitions and correct terminology is important and apologise for lack of clarity. We have reworded the text carefully.

    The reviewer is correct: specification of neural crest, placodes and neural plate is observed very early in chick, prior to gastrulation. However, in specification experiments tissue is removed from its normal environment to reveal what it does autonomously in the absence of additional signals. In the current study, we assess the activation of gene modules in normal development. We have therefore reworded the text to avoid ‘specification’ in this context.

    Reviewer #3 (Public Review):

    The goal of this work was to better understand how cell fate decisions at the neural plate border (NPB) occur. There are two prevailing models in the field for how neural, neural crest and placode fates emerge: (i) binary competence which suggests initial segregation of ectoderm into neural/neural crest versus placode/epidermis; (ii) neural plate border, where cells have mixed identity and retain the ability to generate all the ectodermal derivatives until after neurulation begins.

    The authors use single-cell sequencing to define the development of the NPB at a transcriptional level and suggest that their cell classification identified increased ectodermal cell diversity over time and that as cells age their fate probabilities become transcriptionally similar to their terminal state. The observation of a placode module emerging before the neural and neural crest modules is somewhat consistent with the binary competence model but the observation of cells with potentially mixed identity at earlier stages is consistent with the neural plate border model.

    Differences in the timing of analyses and techniques used can account for the generation of these two original models, and in essence, the authors have found some evidence for both models, possibly due to the period over which they performed their studies. However, the authors propose recognizing the neural plate border as an anatomical structure, containing transcriptionally unstable progenitors and that a gradient border model defines cell fate choice in concert with spatiotemporal positioning.

    The idea that the neural plate border is an anatomical structure is not new to most embryologists as this has been well-recognized in lineage tracing and transplantation assays in many different species over many decades.

    We appreciate the reviewers comment and agree that the neural plate border has previously been characterised anatomically. However, many studies have applied the term literally in reference to a transcriptional state which is specified through the expression of ‘neural plate border specifiers’, prior to segregation of the placodes and neural crest. Here we highlight that treating the neural plate border as a definitive transcriptional state which can be identified through the expression of ‘neural plate border specifiers’ is false. Instead, we find these ‘specifiers’ are upregulated within either neural crest, placodal or neural cell lineages over time. Cells at the neural plate border co-express these alternate lineage markers and therefore predicted to be undecided.

    The authors don't provide molecular evidence for transcriptional instability in any cells. It's a molecular term and phenomenon inaccurately applied to these cells that are simply bipotential progenitors.

    We thank the reviewer for pointing this out; we have therefore refrained from using the term unstable and instead refer to the cells as ‘undecided’ as suggested by reviewer 2.

    Lastly, there's no evidence of a gradient that fits the proper biochemical or molecular definition. Graded or sequential are more appropriate terms that reflect the lineage determination or segregation events the authors characterize, but there's no data provided to support a true role for a gradient such as that achieved by a concentration or time-dependent morphogen.

    We agree with the reviewer that ‘gradient’ was misleading. We have now replaced ‘gradient’ with ‘graded’ and expanded figure 6 to highlight the graded co-expression of gene modules associated with alternate fates. We have changed the title to reflect this.

    A limitation of the study is that much of it reads like a proof-of-principle because validation comes primarily from known genes, their expression patterns in vivo, and their subsequent in vivo functions. Thus, the authors need to qualify their interpretations and conclusions and provide caveats throughout the manuscript to reflect the fact that no functional testing was performed on any novel genes in the emerging modules classified as placode versus neural or neural crest.

    We agree with the reviewer that we do not provide any functional data to validate our predictions; it is for this reason that we submitted the manuscript as a ‘resource’ to make our data available to the community.

    Lastly, a limitation of gene expression studies is that it provides snapshots of cells in time, and while implying they have broad potential or are lineage fated, do not actually test and confirm their ultimate fate. Therefore, in parallel with their studies, the authors really need to consider, the wealth of lineage tracing data, especially single-cell lineage tracing, which has been performed using the embryos of the same stage as that sequenced in this study, and which has revealed critical data about the potential cells through when and where lineage segregation and cell fate determination occurs.

    The reviewer rightly points out the significance of the classical experiments in the context of the neural plate border. However, only one of the mentioned studies (Bronner-Fraser and Fraser, 1989), analyses cells at a single-cell level and does not assess placodes, while the remaining studies use tissue transplantation or cell population labelling. Although these studies provide valuable insights, they do not examine the fate or potential of single cells, nor do they reveal the transcriptional signature of these progenitors.

    Our findings emphasize the transcriptional heterogeneity at the neural plate border, suggesting that distinct subsets of neural plate border progenitors undergo varying sequences of fate restrictions. The upcoming challenge will be to conduct clonal analysis alongside scRNAseq to determine if neural plate border progenitors with similar transcriptional signatures experience the same fate restrictions or if external factors, such as cell-cell signalling, dictate cell fate choices.

    We have amended the manuscript to clarify that predictions of fate decisions require future validation through lineage tracing. Additionally, we have acknowledged in the introduction that previous studies have demonstrated the intermingling of neural, neural crest, and placodal progenitors at the neural plate border.

  2. eLife assessment

    The study of Thiery et al. details the heterogeneous expression of a very large number of genes presumably associated with cell fate decisions in the ectoderm at the neural plate border in early avian embryos. The authors mostly succeed in presenting their very complex strategy of data analysis in a clear way but the work is incomplete with some conceptual weaknesses in how the authors describe and interpret their results. By focusing on one of the earliest cell fate decisions in the ectoderm of a vertebrate embryo, this study will be valuable to a broad range of developmental biologists.

  3. Reviewer #1 (Public Review):

    This manuscript confirms previous studies suggesting a great deal of heterogeneity of gene expression at the neural plate border in early vertebrate embryos, as neural, placodal, neural crest, and epidermal lineages gradually segregate. Using scRNA-seq, the study expands previous studies by using far larger numbers of genes as evidence of this heterogeneity. The evidence for this heterogeneity and the change in heterogeneity over time is compelling.

    Many studies have suggested that there is considerable heterogeneity of gene expression in the developing neural plate border as the neural, neural crest, placodal and epidermal lineages segregate. Although the evidence for such heterogeneity was strong, until the advent of scRNA-seq, the extent of this heterogeneity was not appreciated. By using scRNA-seq at different stages of chick development, the authors sought to characterize how this heterogeneity develops and resolves over time.

    The work is technically sound, and the level of analysis of gene expression, clustering, synexpression groups, and dynamic changes in gene modules over time is state-of-the-art. A weakness of the results as they stand now is that the conclusions of the analysis are not tested by the authors and thus, are over-interpreted. Such tests could be performed in future studies either by gain- and loss-of-function experiments or by using lineage tracing to demonstrate that the cell states the authors observe - especially the "unstable progenitors" they characterize - are biologically meaningful. The data will nevertheless be a useful resource to investigators interested in understanding the development of different cell lineages at the neural plate border.

  4. Reviewer #2 (Public Review):

    The study of Thiery et al. aims to elucidate how cells undergo fate decisions between neural crest and (pan-) placodal cells at the neural plate border (NPB). While several previous single-cell RNA-Seq studies in vertebrates have included neural plate border cells (e.g. Briggs et al., 2018; Wagner et al., 2018; Williams et al., 2022), these previous studies did not provide conclusive insights on cell fate decisions between neural crest and placodes, due to either the limited number of genes recovered, the limited number of cells sampled or the limited numbers of stages included. The present study overcomes these limitations by analyzing almost 18,000 cells at six stages of development ranging from gastrulation until after neural tube closure (8 somite-stage), with an average depth of almost 4000 genes/cell. Using this extensive and high-quality data set, the study first describes the timing of segregation of neural crest and placodal lineages at the NPB suggesting that at late neural fold stages (somite stage 4) most cells have decided between placodal and neural crest fates. It then identifies gene modules specific for neural crest and placodal lineages and characterizes their temporal and spatial expression. Focusing on an NPB-specific subset of cells, the study then shows that initially most of these cells co-express neural crest and placodal gene modules suggesting that these are undecided cells, which they term "border-located unstable progenitors" (BLUPs). The proportion of BLUPs decreases over time, while cells classified as placodal or neural crest cells increases, with few BLUPs remaining at late neural fold stages (and a few scattered BLUPs even at somite stage 8). Based on these findings, the authors propose a new model of cell fate decisions at the NPB (termed the "gradient border model"), according to which the NPB is not defined by a specific transcriptional state but is rather a region of undecided cells, which diminishes in size between gastrulation and neural fold stages due to more and more cells committing to a placodal or neural crest fate based on their mediolateral position (with medial cells becoming specified as neural crest and lateral cells as placodal cells).

    The study of Thiery et al. provides an unprecedentedly detailed, methodologically careful, and well-argued analysis of cell fate decisions at the NPB. It provides novel insights into this process by clearly demonstrating that the NPB is an area of indecision, in which cells initially co-express gene modules for ectodermal fates (neural crest and placodes), which subsequently become segregated into mutually exclusive cell populations. The paper is very well written and largely succeeds in presenting the very complex strategy of data analysis in a clear way. By addressing the earliest cell fate decisions in the ectoderm and one of the earliest cell fate decisions in the developing vertebrate embryo, this study will have a significant impact and be of interest to a wide audience of developmental biologists. There are, two conceptual issues raised in the paper that require further discussion.

    First, the authors suggest that their data resolve a conflict between two previously proposed models, the "binary competence model" and the "neural plate border model". The authors correctly describe, that the binary competence model proposed by Ahrens and Schlosser (2005) and Schlosser (2006) suggests that the ectoderm is first divided into two territories (neural and non-neural), which differ in competence, with the neural territory subsequently giving rise to the neural plate and neural crest and the non-neural territory giving rise to placodes and epidermis (sequence of cell-fate decisions: ([neural or neural crest]-[epidermal or placodal]). This model was proposed as an alternative to a "neural plate border state model", which instead suggests that initially the NPB is induced as a territory characterized by a specific transcriptional state, from which then neural crest and placodes are induced by different signals (sequence of cell fate decisions: neural-[placodal or neural crest]-epidermal) (see Schlosser, 2006, 2014). Instead in this paper, the authors contrast the binary competence model with a model they call the "neural plate border" model according to which the NPB can give rise to all four ectodermal fates with equal probability. However, I think this misses the main point of contention since all previously proposed models are in agreement that initially the neural plate border region is unspecified and can give rise to all four fates and that lineage restrictions only appear over time. "Binary competence" and "Neural plate border state" model, differ, however, in their predictions about the sequence, in which these fate restrictions occur.

    Second, the authors should be more careful when relating their data to the specification or commitment of cells. Questions of specification and commitment can only be tested by experimental manipulation and cannot be inferred from a transcriptome analysis of normal development. So the conclusion that the activation of placodal, neural and neural crest-specific modules in that sequence suggests a sequence of specification in the same temporal order (lines 706-709) is not justified. Studies from the authors' own lab previously showed that epiblast cells from pre-gastrula stages are specified to express a large number of NPB border markers including neural crest and panplacodal markers, when cultured in vitro (Trevers et al., 2018; see also Basch et al., 2006 for early specification of the neural crest), which is not easily reconciled with this interpretation. I am not aware of any experimental evidence that shows that a panplacodal regulatory state is specified prior to neural crest in the chick (although I may have missed this). In Xenopus, experimental studies have shown instead that neural crest is specified and committed during late gastrulation, while the panplacodal states are specified much later, at neural fold stages (Mancilla and Mayor, 2006; Ahrens and Schlosser, 2005). It may well be the case that the relative timing of neural crest and panplacodal specification is different between species (and such easy dissociability may even be expected from the perspective of the binary competence model).

  5. Reviewer #3 (Public Review):

    The goal of this work was to better understand how cell fate decisions at the neural plate border (NPB) occur. There are two prevailing models in the field for how neural, neural crest and placode fates emerge: (i) binary competence which suggests initial segregation of ectoderm into neural/neural crest versus placode/epidermis; (ii) neural plate border, where cells have mixed identity and retain the ability to generate all the ectodermal derivatives until after neurulation begins.

    The authors use single-cell sequencing to define the development of the NPB at a transcriptional level and suggest that their cell classification identified increased ectodermal cell diversity over time and that as cells age their fate probabilities become transcriptionally similar to their terminal state. The observation of a placode module emerging before the neural and neural crest modules is somewhat consistent with the binary competence model but the observation of cells with potentially mixed identity at earlier stages is consistent with the neural plate border model.

    Differences in the timing of analyses and techniques used can account for the generation of these two original models, and in essence, the authors have found some evidence for both models, possibly due to the period over which they performed their studies. However, the authors propose recognizing the neural plate border as an anatomical structure, containing transcriptionally unstable progenitors and that a gradient border model defines cell fate choice in concert with spatiotemporal positioning.

    The idea that the neural plate border is an anatomical structure is not new to most embryologists as this has been well-recognized in lineage tracing and transplantation assays in many different species over many decades. The authors don't provide molecular evidence for transcriptional instability in any cells. It's a molecular term and phenomenon inaccurately applied to these cells that are simply bipotential progenitors. Lastly, there's no evidence of a gradient that fits the proper biochemical or molecular definition. Graded or sequential are more appropriate terms that reflect the lineage determination or segregation events the authors characterize, but there's no data provided to support a true role for a gradient such as that achieved by a concentration or time-dependent morphogen.

    A limitation of the study is that much of it reads like a proof-of-principle because validation comes primarily from known genes, their expression patterns in vivo, and their subsequent in vivo functions. Thus, the authors need to qualify their interpretations and conclusions and provide caveats throughout the manuscript to reflect the fact that no functional testing was performed on any novel genes in the emerging modules classified as placode versus neural or neural crest.

    Lastly, a limitation of gene expression studies is that it provides snapshots of cells in time, and while implying they have broad potential or are lineage fated, do not actually test and confirm their ultimate fate. Therefore, in parallel with their studies, the authors really need to consider, the wealth of lineage tracing data, especially single-cell lineage tracing, which has been performed using the embryos of the same stage as that sequenced in this study, and which has revealed critical data about the potential cells through when and where lineage segregation and cell fate determination occurs.