Weakening of the cognition and height association from 1957 to 2018: Findings from four British birth cohort studies

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    This paper provides valuable evidence for a weakening of the association between cognitive ability and height from 1957 to 2018 in the UK. The authors find the strength of the association declined over this time frame. These associations were further attenuated after accounting for proxy measures of social class. This paper is a solid contribution to debates about how genetic, environmental, and social factors have affected the joint distribution of height and cognitive ability over the last 60 years.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Taller individuals have been repeatedly found to have higher scores on cognitive assessments. Recent studies have suggested that this association can be explained by genetic factors, yet this does not preclude the influence of environmental or social factors that may change over time. We thus tested whether the association changed across time using data from four British birth cohorts (born in 1946, 1958, 1970, and 2001).

Methods:

In each cohort height was measured and cognition via verbal reasoning, vocabulary/comprehension, and mathematical tests; at ages 10/11 and 14/17 years (N=41,418). We examined associations between height and cognition at each age, separately in each cohort, and for each cognitive test administered. Linear and quantile regression models were used.

Results:

Taller participants had higher mean cognitive assessment scores in childhood and adolescence, yet the associations were weaker in later (1970 and 2001) cohorts. For example, the mean difference in height comparing the highest with lowest verbal cognition scores at 10/11 years was 0.57 SD (95% CI = 0.44–0.70) in the 1946 cohort, yet 0.30 SD (0.23–0.37) in the 2001 cohort. Expressed alternatively, there was a reduction in correlation from 0.17 (0.15–0.20) to 0.08 (0.06–0.10). This pattern of change in the association was observed across all ages and cognition measures used, was robust to adjustment for social class and parental height, and modeling of plausible missing-not-at-random scenarios. Quantile regression analyses suggested that these differences were driven by differences in the lower centiles of height, where environmental influence may be greatest.

Conclusions:

Associations between height and cognitive assessment scores in childhood-adolescence substantially weakened from 1957–2018. These results support the notion that environmental and social change can markedly weaken associations between cognition and other traits.

Funding:

DB is supported by the Economic and Social Research Council (grant number ES/M001660/1); DB and LW by the Medical Research Council (MR/V002147/1). The Medical Research Council (MRC) and the University of Bristol support the MRC Integrative Epidemiology Unit [MC_UU_00011/1]. NMD is supported by an Norwegian Research Council Grant number 295989. VM is supported by the CLOSER Innovation Fund WP19 which is funded by the Economic and Social Research Council (award reference: ES/K000357/1) and Economic and Social Research Council (ES/M001660/1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Article activity feed

  1. Author Response

    Reviewer #1 (Public Review):

    The authors conducted a thorough analysis of the correlation between height and measures of cognitive abilities (what are essentially IQ test components) across four cohorts of children and adolescents in the UK measured between 1957 and 2018. The authors find the strength of the association between height and cognitive measures declined over this time frame--for example, among 10- and 11-year-olds born in 1958, height explained roughly 3% of the variation in verbal reasoning scores; this dropped to approximately 0.6% among those born in 2001. These associations were further attenuated after accounting for proxy measures of social class.

    The authors' analyses were performed carefully and their observations regarding declining height / cognitive measure associations are likely to be robust if we interpret their results with an important caveat: these results reflect measurements aimed at assessing cognition rather than cognition itself. The importance of this distinction is evidenced by the changing correlation structure of the cognitive measures over time. For example, age 11 verbal / math scores were correlated at >= 0.75 at the first two time points but dropped to 0.33 at the most recent time point. Similar patterns are present for the other cognitive measures and time points. The authors' conclude that such changes are unlikely to impact their primary findings, but I'm less certain. For example, one interpretation of this finding is that older cognitive measures were simply worse at indexing distinct cognitive domains and instead reflected a combination of cognitive ability together with non-specific factors relating to opportunity, health, class, etc. Further, height was historically a stronger proxy for class and economic status than it is today (e.g., by capturing adequate nutritional intake, risk for childhood disease, etc.). Together, then, previously high height / cognitive measure correlations might reflect the fact that both phenotypes previously indexed socio-economic factors to a greater extent than they might today (which is still non-negligible).

    We agree, it is possible that our results could in principle be explained by changes to the measures. We have provided further analysis to attempt to inform the likelihood of this suggestion and have expanded our discussion of this issue (Discussion, explanation of findings section; copied below).

    First, we conducted additional sensitivity analysis repeating our main analysis using cognition measures in which the number of response options was set to be the same for each test (the lowest common denominator across all cohorts). This was tested in two separate approaches: 1) by reducing the number of categories to the same number in each cohort; and 2) or by picking a random sample of question items for each category. Our main findings were unchanged: described in “Additional and sensitivity analyses” section, Figs S20-S21.

    Regarding the suggestion that “high height / cognitive measure correlations might reflect the fact that both phenotypes previously indexed socio-economic factors to a greater extent than they might today” – we sought to account for this by adjustment for measured indicators of socioeconomic position, and found the trend remained after adjustment (Fig 1 panel 2). As in other observational studies we cannot fully rule out the possibility of residual confounding however (Discussion, Explanation of findings paragraph 2).

    “The multi-purpose and multidisciplinary cohorts used cognition tests which differed slightly in each cohort. It is therefore possible that differences in testing could have either: 1) entirely generated the pattern of results we observed, such that if identical tests were used the association between cognition and height would otherwise have been identical in each cohort; in contrast to previous findings which reported using identical tests20; or 2) biased our results, such that if identical tests were used the decline in association between cognition and height would have been less marked than we reported. While we cannot directly falsify this alternative hypothesis given our reliance on historical data sources, a number of lines of reasoning suggest that the first scenario is unlikely. First, our results were similar when using 4 different cognitive tests (spanning mathematical and verbal reasoning); any bias which generated the results we observed should be similarly present across all 4 tests. Other things being equal, one would expect that more discriminatory tests (i.e., those with a greater number of responses) would have higher accuracy and thus better index cognition. Our results were similar when the youngest cohort had similar numbers of unique scores in cognitive tests compared with the oldest cohort (Verbal @ 11 years: n=41 in 1946c, n=40 in 2001c) and fewer unique scores (Maths @ 7/11: n=51 in 1946c, n=21 in 2001c). Our results were also similar in sensitivity analyses in which the number of response options were set to be the same in each cohort. Higher random measurement error in the independent variable (cognition) would lead to weakened observed associations with the outcome (height),52 yet we do not a-priori anticipate that this such error was higher in younger across all tests in such a manner that would have led to the correlation we observed. Ensuring comparability of exposure is a major challenge across such large timespans. Reassuringly, our results are consistent with those from a previous study which reported consistent tests being used (from 1939-1967).20 However, even seemingly identical require modification across time (e.g., for verbal reasoning/vocabulary there is typically a need to adapt question items due to societal and cultural changes over time in vocabulary and numerical use); further, changes to education such as increases in testing may have led to increasing preparedness and familiarity with testing than in the past even where identical tests are used.

    Interestingly, we observed a marked reduction in the correlation between cognitive tests across time (e.g., between verbal and maths scores). This trend has been reported in previous studies53 54 and warrants future investigation; it is consistent with evidence that IQ gains across time seemingly differ by cognitive domain,45 potentially capturing differences across time in cognitive skill use and development in the population. Previous studies using three (1958-2001c) of the included cohorts have also reported changing associations between cognition (verbal test scores at 10/11 years) and other traits: a declining negative association with birth weight19 and a change in direction of association with maternal age (from negative to positive);55 each finding has plausible explanations based on changes across time in relevant societal phenomena (improved medical conditions19 and changes in parental characteristics,55 respectfully), yet also cannot conclusively falsify the notion that differences in tests used influences the results obtained. In this paper, we used multiple tests and sensitivity analyses to attempt to address this.”

    Additionally, their findings add an interesting data point to a collection of recent results suggesting that the relationship between cognitive and anthropometric measures is complex and difficult to interpret. For example, studies using genetic markers to examine shared genetic bases have virtually all relied on methods assuming mating is random, which is not the case empirically. Howe et al. (doi.org/10.1038/s41588-022-01062-7) recently reported that the ostensible genetic correlation of -.32 between years of education and BMI attenuates to -.05 when using direct-effect estimates, which should theoretically be immune to the effects of non-random mating and other confounding variables. Likewise, Keller et al. (doi.org/10.1371/journal.pgen.1003451) and Border et al. (doi.org/10.1101/2022.03.21.485215) used very different approaches to arrive at the same conclusion that ~50% of the nominal genetic correlation between IQ and height could be attributed to bivariate assortative mating rather than shared causal biological factors. Given that assortative mating on both IQ measures and height involves many other traits (not just two as assumed in such bivariate models), the true extent to which height / IQ correlations reflect causal factors is plausibly even lower than these estimates suggest. For these reasons, I do not entirely agree with the authors' review of previous findings in the introduction, where they write "recent studies have suggested that links between higher cognition and taller height can be largely explained by genetic factors", though it is certainly true that this claim has been made.

    We have revised our introduction to better reflect the complexity of previous findings and to note that this claim.

    Reviewer #2 (Public Review):

    The authors use birth cohorts with extensive cognitive assessments and height measurements along with data on parental height and socioeconomic status. The authors estimate that the correlation between height and cognitive ability has approximately halved in the last 60 years.

    Quantile regression results suggest that this is due to a stronger association between low cognitive ability and short stature in older cohorts, potentially due to environmental factors that cause both and that have been removed by improvements in the environment in the last 60 years.

    While this is a plausible hypothesis, the evidence presented in the manuscript is unable to rule out alternative hypotheses, such as changes in assortative mating.

    The results in the manuscript will be of interest to researchers investigating how genetics and environment lead to correlations between cognitive and physical/health traits, and to researchers interested in the relationship between social and health inequalities.

    While my sense of the evidence presented is that there is fairly solid statistical evidence for a trend where the correlation between cognitive ability and height declines over time, there is no formal quantification of this trend nor measurement of the uncertainty in the trend.

    We now include additional statistical tests to compare estimates in each cohort (Fig S6). We have opted to include this in supplemental material given the large number of tests included already.

    Similarly, the quantile regression plots in Figure 2 appear to show a trend across the height deciles for the two oldest cohorts, but no quantification of how strong this is nor what uncertainty exists is calculated. Furthermore, if the apparent trend in the quantile regression plots is true, wouldn't this imply a non-linear association between height and cognitive ability for the older cohorts? Can this be seen in the scatterplots or in a non-linear regression?

    We included 95% confidence intervals in our quantile regression analyses which provide an indication of uncertainty. We believe that given the substantial amount of analyses (across 4 historical cohorts and 4 cognition tests; 23 supplemental results) further work would be best placed to undertake additional statistical exploration of both quantile regression and non-linear associations. We would be happy to reconsider this if requested.

    I think the authors could have done more with their data to investigate the contribution of assortative mating to the observed trend. Looking at Figure S4, it looks like the correlation between mother's education and father's height in the 2001 cohort is substantially lower than for previous cohorts. While cognitive ability may not be available for parents, one could look at, for example, father's education and mother's height across the cohorts and see if there is a downward trend in correlation.

    We now include in Figure S5 cross-cohort investigation of the correlation between parental height and maternal education. We find that the correlation is similar across 1946c, 1958c, and 1970c, yet is weaker in 2001c (Fig S5). We comment on this in the paper (see revised discussion, explanation of findings section). Interpretation of these results is complicated by measurement error in parental education (typically reported for both parents by mothers). Further, interpretation may be further complicated by reductions in the socioeconomic patterning of height across time (see https://www.thelancet.com/journals/lanpub/article/PIIS2468-2667(18)30045-8/fulltext). Future would which focuses on assortative mating could investigate these issues.

    Reviewer #3 (Public Review):

    A difficulty with the paper is the different cognitive tests used in the different cohorts; the authors address this at some length in the discussion. However, I am afraid that this matter makes the results hard or impossible to interpret along the lines of their research question. One would need to know that, if these cognitive tests were administered in a single cohort at one time, they would have the same correlation with height.

    Please see our responses to Reviewer 1 and our revised Discussion. We are reliant upon imperfect historical data to make inferences on long-run trends, in the absence of ideal data for this paper (eg, the same tests used in all cohorts born in 1946, 1958, 1970 and millennium; though even in this instance some changes would be required (eg, to the words chosen in verbal reasoning tasks; see Discussion, explanation of findings section)).

    I judge that the main limitation of the method is the fact that different cognitive tests are used in the different cohorts. The tests in themselves are valid tests of cognitive functions. However, given that the focus of the study is on the change in correlations across time, then it is a worry that the tests are different; that is, the authors have the burden of proving to us that, if the environmental/social changes had NOT been operative across time, then the height-cognitive test correlations would be the same. What can the authors do to prove to us that if, say, all of these different-cohort verbal tests had been given to a single cohort on a single occasion, then they would have the same correlations with height? The same goes for the mathematics based tests. I note the tests' somewhat different distributions in Figure 1, but that is not the only thing that could lead to different correlations with, say, height. I am aware that all cognitive tests tend to correlate positively and that they all have loadings on general intelligence; however, different tests will not necessarily have the same correlations with outside variables (e.g. height). This will depend on things such as their content, their reliability/internal consistency etc.

    In the Results the authors state: "Cognitive test scores were strongly-moderately positively correlated with each other, with the size of the correlation weakening across time." That's true, but perhaps, also a major concern for this study. One possible reason for the decline in verbal-maths test correlations across cohorts (old to recent) is that the nature of these tests has changed across time, either/both in terms of content (what capabilities are assessed) or something such as reliability/internal consistency/ceiling-or-floor effects (how well the capabilities are assessed). That is, given that the height-cognitive test correlations show a similarly declining pattern of correlations over cohorts, it could be that the tests' contents (of the different tests) is partly or wholly responsible. I raise that as a possibility only, and I appreciate that it might be correct, as the authors prefer, that there is an inherent lowering of intelligence-height correlations over time, but I do not think that one can rule out-with the present study's design-that it might have been due to the change in tests. For example, a reading-math correlation of 0.74 in 1946 lowered to a correlation of .32 in 2001, in the face of different tests. To show that this is not due to the different tests being used would require more information. If this is a true result, it is big news.

    Please see our responses to Reviewer 1. This includes additional analysis and an expanded discussion of this possible cause of bias. We hope our manuscript now provides further evidence and discussion to inform the likelihood of this possibility.

    I have a suggestion: if the authors wish to rule out the possibility that the lowering intelligence-height correlations across cohorts are due to different cognitive tests being used, they should take all the cognitive tests used here and apply them cross-sectionally to single-year-born samples (of 11- and 16-year olds) that have also been measured for height. If the cognitive tests all correlate at the same level with height within each of these two samples (they needn't do so across the 11- and 16-year olds), then one could proceed more safely with between-cohorts (1946, 1958, 1970, 2001) comparisons of the correlations.

    We thank the reviewer for this suggestion. However we are unsure that we understood the suggested analysis or whether it was tractable given our data—the cohorts we used were born in either 1946, 1958, 1970, or around 2000. We do not have cross-sectional samples of 11 and 16 year olds at the same time.

  2. eLife assessment

    This paper provides valuable evidence for a weakening of the association between cognitive ability and height from 1957 to 2018 in the UK. The authors find the strength of the association declined over this time frame. These associations were further attenuated after accounting for proxy measures of social class. This paper is a solid contribution to debates about how genetic, environmental, and social factors have affected the joint distribution of height and cognitive ability over the last 60 years.

  3. Reviewer #1 (Public Review):

    The authors conducted a thorough analysis of the correlation between height and measures of cognitive abilities (what are essentially IQ test components) across four cohorts of children and adolescents in the UK measured between 1957 and 2018. The authors find the strength of the association between height and cognitive measures declined over this time frame--for example, among 10- and 11-year-olds born in 1958, height explained roughly 3% of the variation in verbal reasoning scores; this dropped to approximately 0.6% among those born in 2001. These associations were further attenuated after accounting for proxy measures of social class.

    The authors' analyses were performed carefully and their observations regarding declining height / cognitive measure associations are likely to be robust if we interpret their results with an important caveat: these results reflect measurements aimed at assessing cognition rather than cognition itself. The importance of this distinction is evidenced by the changing correlation structure of the cognitive measures over time. For example, age 11 verbal / math scores were correlated at >= 0.75 at the first two time points but dropped to 0.33 at the most recent time point. Similar patterns are present for the other cognitive measures and time points. The authors' conclude that such changes are unlikely to impact their primary findings, but I'm less certain. For example, one interpretation of this finding is that older cognitive measures were simply worse at indexing distinct cognitive domains and instead reflected a combination of cognitive ability together with non-specific factors relating to opportunity, health, class, etc. Further, height was historically a stronger proxy for class and economic status than it is today (e.g., by capturing adequate nutritional intake, risk for childhood disease, etc.). Together, then, previously high height / cognitive measure correlations might reflect the fact that both phenotypes previously indexed socio-economic factors to a greater extent than they might today (which is still non-negligible).

    Additionally, their findings add an interesting data point to a collection of recent results suggesting that the relationship between cognitive and anthropometric measures is complex and difficult to interpret. For example, studies using genetic markers to examine shared genetic bases have virtually all relied on methods assuming mating is random, which is not the case empirically. Howe et al. (doi.org/10.1038/s41588-022-01062-7) recently reported that the ostensible genetic correlation of -.32 between years of education and BMI attenuates to -.05 when using direct-effect estimates, which should theoretically be immune to the effects of non-random mating and other confounding variables. Likewise, Keller et al. (doi.org/10.1371/journal.pgen.1003451) and Border et al. (doi.org/10.1101/2022.03.21.485215) used very different approaches to arrive at the same conclusion that ~50% of the nominal genetic correlation between IQ and height could be attributed to bivariate assortative mating rather than shared causal biological factors. Given that assortative mating on both IQ measures and height involves many other traits (not just two as assumed in such bivariate models), the true extent to which height / IQ correlations reflect causal factors is plausibly even lower than these estimates suggest. For these reasons, I do not entirely agree with the authors' review of previous findings in the introduction, where they write "recent studies have suggested that links between higher cognition and taller height can be largely explained by genetic factors", though it is certainly true that this claim has been made.

  4. Reviewer #2 (Public Review):

    The authors use birth cohorts with extensive cognitive assessments and height measurements along with data on parental height and socioeconomic status. The authors estimate that the correlation between height and cognitive ability has approximately halved in the last 60 years.

    Quantile regression results suggest that this is due to a stronger association between low cognitive ability and short stature in older cohorts, potentially due to environmental factors that cause both and that have been removed by improvements in the environment in the last 60 years.

    While this is a plausible hypothesis, the evidence presented in the manuscript is unable to rule out alternative hypotheses, such as changes in assortative mating.

    The results in the manuscript will be of interest to researchers investigating how genetics and environment lead to correlations between cognitive and physical/health traits, and to researchers interested in the relationship between social and health inequalities.

    While my sense of the evidence presented is that there is fairly solid statistical evidence for a trend where the correlation between cognitive ability and height declines over time, there is no formal quantification of this trend nor measurement of the uncertainty in the trend.

    Similarly, the quantile regression plots in Figure 2 appear to show a trend across the height deciles for the two oldest cohorts, but no quantification of how strong this is nor what uncertainty exists is calculated. Furthermore, if the apparent trend in the quantile regression plots is true, wouldn't this imply a non-linear association between height and cognitive ability for the older cohorts? Can this be seen in the scatterplots or in a non-linear regression?

    I think the authors could have done more with their data to investigate the contribution of assortative mating to the observed trend. Looking at Figure S4, it looks like the correlation between mother's education and father's height in the 2001 cohort is substantially lower than for previous cohorts. While cognitive ability may not be available for parents, one could look at, for example, father's education and mother's height across the cohorts and see if there is a downward trend in correlation.

  5. Reviewer #3 (Public Review):

    A difficulty with the paper is the different cognitive tests used in the different cohorts; the authors address this at some length in the discussion. However, I am afraid that this matter makes the results hard or impossible to interpret along the lines of their research question. One would need to know that, if these cognitive tests were administered in a single cohort at one time, they would have the same correlation with height.

    I judge that the main limitation of the method is the fact that different cognitive tests are used in the different cohorts. The tests in themselves are valid tests of cognitive functions. However, given that the focus of the study is on the change in correlations across time, then it is a worry that the tests are different; that is, the authors have the burden of proving to us that, if the environmental/social changes had NOT been operative across time, then the height-cognitive test correlations would be the same. What can the authors do to prove to us that if, say, all of these different-cohort verbal tests had been given to a single cohort on a single occasion, then they would have the same correlations with height? The same goes for the mathematics based tests. I note the tests' somewhat different distributions in Figure 1, but that is not the only thing that could lead to different correlations with, say, height. I am aware that all cognitive tests tend to correlate positively and that they all have loadings on general intelligence; however, different tests will not necessarily have the same correlations with outside variables (e.g. height). This will depend on things such as their content, their reliability/internal consistency etc.

    In the Results the authors state: "Cognitive test scores were strongly-moderately positively correlated with each other, with the size of the correlation weakening across time." That's true, but perhaps, also a major concern for this study. One possible reason for the decline in verbal-maths test correlations across cohorts (old to recent) is that the nature of these tests has changed across time, either/both in terms of content (what capabilities are assessed) or something such as reliability/internal consistency/ceiling-or-floor effects (how well the capabilities are assessed). That is, given that the height-cognitive test correlations show a similarly declining pattern of correlations over cohorts, it could be that the tests' contents (of the different tests) is partly or wholly responsible. I raise that as a possibility only, and I appreciate that it might be correct, as the authors prefer, that there is an inherent lowering of intelligence-height correlations over time, but I do not think that one can rule out-with the present study's design-that it might have been due to the change in tests. For example, a reading-math correlation of 0.74 in 1946 lowered to a correlation of .32 in 2001, in the face of different tests. To show that this is not due to the different tests being used would require more information. If this is a true result, it is big news.

    I have a suggestion: if the authors wish to rule out the possibility that the lowering intelligence-height correlations across cohorts are due to different cognitive tests being used, they should take all the cognitive tests used here and apply them cross-sectionally to single-year-born samples (of 11- and 16-year olds) that have also been measured for height. If the cognitive tests all correlate at the same level with height within each of these two samples (they needn't do so across the 11- and 16-year olds), then one could proceed more safely with between-cohorts (1946, 1958, 1970, 2001) comparisons of the correlations.