Kap-β2/Transportin mediates β-catenin nuclear transport in Wnt signaling

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife assessment

    Using a heterologous model system of budding yeast, authors find that nuclear translocation of beta-catenin is mediated by Kap104, the ortholog of Transportin (TNPO)1/2. A TNPO1 binding motif was identified in the C-terminal region of beta-catenin, which serves as a nuclear localization signal, and mutation of the motif inhibits beta-catenin mediated transcription. The manuscript serves as a staring point to study how much this motif contributes to nuclear localization of full-length beta-catenin in mammalian cells and to assess whether inhibiting TNPO1 interaction can reduce hyperactivation of beta-catenin signaling.

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Wnt signaling is essential for many aspects of embryonic development including the formation of the primary embryonic axis. In addition, excessive Wnt signaling drives multiple diseases including cancer, highlighting its importance for disease pathogenesis. β-catenin is a key effector in this pathway that translocates into the nucleus and activates Wnt responsive genes. However, due to our lack of understanding of β-catenin nuclear transport, therapeutic modulation of Wnt signaling has been challenging. Here, we took an unconventional approach to address this long-standing question by exploiting a heterologous model system, the budding yeast Saccharomyces cerevisiae, which contains a conserved nuclear transport machinery. In contrast to prior work, we demonstrate that β-catenin accumulates in the nucleus in a Ran-dependent manner, suggesting the use of a nuclear transport receptor (NTR). Indeed, a systematic and conditional inhibition of NTRs revealed that only Kap104, the ortholog of Kap-β2/Transportin-1 (TNPO1), was required for β-catenin nuclear import. We further demonstrate direct binding between TNPO1 and β-catenin that is mediated by a conserved PY-NLS. Finally, using Xenopus secondary axis and TCF/LEF (T Cell factor/lymphoid enhancer factor family) reporter assays, we demonstrate that our results in yeast can be directly translated to vertebrates. By elucidating the nuclear localization signal in β-catenin and its cognate NTR, our study suggests new therapeutic targets for a host of human diseases caused by excessive Wnt signaling. Indeed, we demonstrate that a small chimeric peptide designed to target TNPO1 can reduce Wnt signaling as a first step toward therapeutics.

Article activity feed

  1. eLife assessment

    Using a heterologous model system of budding yeast, authors find that nuclear translocation of beta-catenin is mediated by Kap104, the ortholog of Transportin (TNPO)1/2. A TNPO1 binding motif was identified in the C-terminal region of beta-catenin, which serves as a nuclear localization signal, and mutation of the motif inhibits beta-catenin mediated transcription. The manuscript serves as a staring point to study how much this motif contributes to nuclear localization of full-length beta-catenin in mammalian cells and to assess whether inhibiting TNPO1 interaction can reduce hyperactivation of beta-catenin signaling.

  2. Reviewer #1 (Public Review):

    Hyperactivation of WNT/b-catenin signaling has been implicated in cancer. How b-catenin enters the nucleus is not completely understood. Using a heterologous model system of budding yeast, authors find that nuclear translocation of b-catenin is mediated by Kap104, the orthologue of TPO1/2. Authors further showed that a PY like motif in the C-terminus of b-catenin binds TPO1 and serves as a nuclear localization signal (NLS). Mutation of the PY like motif or inhibition of TPO1/2 inhibits b-catenin mediated transcription. Overall, this is an interesting study. The evidence that the PY like motif can serve as a NLS in yeast is convincing. However, how much this motif contributes to nuclear localization of full-length b-catenin in mammalian cells is not clear. Authors have relied on transcription readout of b-catenin, which has many caveats. Direct measurement of the level of b-catenin in the nucleus is important.

  3. Reviewer #2 (Public Review):

    Hwang et al take an unconventional approach to address a longstanding problem in the field of Wnt signaling and cancer: the mechanism of beta-catenin nuclear import. The authors introduce expression of Xenopus beta-catenin in budding yeast, a heterologous model system that does not harbor any known Wnt signaling components but carries highly conserved nuclear transport machinery. They find that GFP-tagged beta-catenin is actively transported to the yeast nucleus in a Ran-GEF-dependent process, indicating NTR-dependent transport. An elegant rapamycin treatment-dependent Anchor-Away method is applied to systematically inhibit 10 budding yeast NTRs, for which orthologues exist in human cells. Significant and specific inhibition of beta-catenin nuclear import is identified when Kap104 (orthologue of Kapbeta2/Transportin-1 (TNPO1) was anchored to the plasma membrane. Furthermore, nuclear import depends on a PY-like NLS sequence in the beta-catenin C-terminus, which was shown to mediate a direct interaction with TNPO1. A role of the vertebrate paralogs tnpo1/2 and the PY-like NLS was confirmed in Xenopus, using double axis formation assays, and in mouse and human cell lines, combining tnpo1/2 depletion with nuclear localization and reporters for beta-catenin dependent transcription. Finally, the authors provide proof that responses of MEF cells to Wnt3a or human beta-catenin overexpression can be inhibited by treatment with a TNPO1/2 blocking peptide (M9M).

    Overall, the results of this study provide a valuable addition to the longstanding and ongoing discussions on the mechanisms of beta-catenin nuclear import. The conclusions are based on a well-focused and solid set of experiments and are confirmed across species in a diverse set of model systems, and findings are discussed against the state of the field. Although the identified TNPO1/2-dependent beta-catenin nuclear import pathway was shown to be a target for peptide-based inhibitory strategies, these findings remain to be confirmed in relevant (colorectal) cancer model systems in which levels of beta-catenin are inappropriately enhanced and inhibition of its nuclear entry is most warranted.