Physiology and ecology together regulate host and vector importance for Ross River virus and other vector-borne diseases
Abstract
Identifying the key vector and host species driving transmission is notoriously difficult for vector-borne zoonoses, but critical for disease control. Here, we present a general approach for quantifying the role hosts and vectors play in transmission that integrates species’ physiological competence with their ecological traits. We apply this model to the medically important arbovirus Ross River virus (RRV), in Brisbane, Australia. We found that vertebrate species with high physiological competence weren’t the most important for community transmission. Instead, we estimated that humans (previously overlooked as epidemiologically important hosts) potentially play an important role in RRV transmission, in part, because highly competent vectors readily feed on them and are highly abundant. By contrast, vectors with high physiological competence were also important for community transmission. Finally, we uncovered two potential transmission cycles: an enzootic cycle involving birds and an urban cycle involving humans. This modelling approach has direct application to other zoonotic arboviruses.
Article activity feed
-
Reviewer #2 (Public Review):
This paper synthesizes a large amount of physiological and ecological data to examine how a range of hosts and vectors contribute to the epidemiology of Ross River Virus. The authors present a nuanced and thought-provoking perspective on the ecology of vector-borne pathogens, employing thorough measures of both physiological competence (rather than merely infection) and vector-host transmission cycles.
Read the original sourceWas this evaluation helpful? -
Reviewer #1 (Public Review):
Quantifying the role of the multiple hosts and vector species involved in the transmission dynamics of some vector-borne diseases, such as RRV, remains challenging. Using RRV in Brisbane as a case study, the manuscript develops a 3-step framework (physiological competence, half transmission cycle, complete transmission cycle) to integrate different aspects of host and vector physiological competence (e.g. titer levels) with ecological traits (e.g. abundance and feeding behavior) and rank the contribution of suspected species to RRV community transmission. They use published experimental and observational data when available combined with models mostly based on GLMMs to generalize patterns. The authors found that being a physiologically competent vertebrate host does not seem essential, instead vertebrate …
Reviewer #1 (Public Review):
Quantifying the role of the multiple hosts and vector species involved in the transmission dynamics of some vector-borne diseases, such as RRV, remains challenging. Using RRV in Brisbane as a case study, the manuscript develops a 3-step framework (physiological competence, half transmission cycle, complete transmission cycle) to integrate different aspects of host and vector physiological competence (e.g. titer levels) with ecological traits (e.g. abundance and feeding behavior) and rank the contribution of suspected species to RRV community transmission. They use published experimental and observational data when available combined with models mostly based on GLMMs to generalize patterns. The authors found that being a physiologically competent vertebrate host does not seem essential, instead vertebrate host ecology and vector physiological competence are the key traits for community transmission of RRV.
Read the original sourceWas this evaluation helpful? -
Evaluation Summary:
The manuscript outlines an epidemiological framework to investigate the relative contribution of different hosts and vectors to the initial spread of a zoonotic disease. It focuses on Ross River virus in Brisbane and collates previously published estimates of abundance, biometrics and viral profiles to highlight the most epidemiologically important routes of transmission.
(This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. Reviewer #2 agreed to share their name with the authors.)
Read the original sourceWas this evaluation helpful? -
-