The role of sigma-1 receptor in organization of endoplasmic reticulum signaling microdomains

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Sigma 1 receptor (S1R) is a 223 amino acid-long transmembrane endoplasmic reticulum (ER) protein. S1R modulates activity of multiple effector proteins but its signaling functions are poorly understood. We here test the hypothesis that biological activity of S1R in cells can be explained by its ability to interact with cholesterol and to form cholesterol-enriched microdomains in the ER. Using reduced reconstitution systems, we demonstrate direct effects of cholesterol on S1R clustering. We identify a novel cholesterol-binding motif in the transmembrane region of S1R and demonstrate its importance for S1R clustering. We demonstrate that S1R-induced membrane microdomains have increased local membrane thickness. Increased local cholesterol concentration and membrane thickness in these domains can modulate signaling of inositol-requiring enzyme 1α (IRE1α) in the ER. Further, S1R agonists cause reduction in S1R clusters, suggesting that biological activity of S1R agonists is linked to remodeling of ER membrane microdomains.

Article activity feed

  1. This manuscript is in revision at eLife

    The decision letter after peer review, sent to the authors on January 7 2021, follows.

    Summary

    This manuscript describes a detailed investigation of the sigma-1 receptor, with an emphasis on the effects of membrane cholesterol content. The authors report that sigma-1 receptor clusters in cholesterol-rich microdomains in the endoplasmic reticulum (ER), contributing to its previously-described localization at mitochondria-associated ER membranes. A series of reconstitution experiments show cholesterol-dependent clustering of the sigma-1 receptor, an effect which is modulated by membrane thickness and drug-like ligands of the receptor. These findings are supplemented by an investigation of the effects of sigma-1 receptor on IRE1a signaling, leading to the finding that sigma-1 knockout attenuates IRE1a function.

    Essential Revisions

    The reviewers agreed that the manuscript was likely to be of broad interest and addresses important biological questions surrounding the poorly understood sigma-1 receptor. However, concerns were raised regarding a number of points that need to be addressed in order for the manuscript to be suitable for publication. Specifically:

    Most of the imaging experiments throughout the manuscript are interpreted only qualitatively, and many of these show relatively minor differences. See "MINOR POINTS" below for a list of specific examples. Objective quantitative analysis should be provided wherever possible. Any subjective assessments should be conducted using blinding to avoid introduction of bias.

    The connection between the biological effects on IRE1a activation and cholesterol-dependent clustering is relatively indirect. The reviewers agree that additional experimental data should be provided to further assess the validity of the authors' proposed model. For example, inclusion of rescue experiments in sigma-1 knockout cells using the cholesterol-binding mutants would help to strengthen the connection between IRE1a function and membrane cholesterol content. Similarly, disruption of cholesterol-rich domains by addition of beta-cyclodextrin could provide additional evidence to support the model. In addition, testing the effects of ligands in the cellular imaging experiments would strengthen the link between in vitro biophysical experiments and cellular physiology.

    A related issue is that cholesterol binding is not tested explicitly for certain sigma-1 receptor mutants, potentially confounding interpretation of experimental data. These include experiments where alterations were made to the S1R sequence, with results interpreted in light of S1R no longer being able to bind cholesterol. Two specific places where this issue arises are:

    1. Studies described on pages 6-7 and shown in Figure 3B where wild-type sigma-1 receptor is compared to S1R-Y201S/Y206S, S1R-Y173S, S1R-4G, and S1R-W9L/W11L. These mutations had differential effects on receptor distribution that were attributed to alterations in cholesterol binding without confirming the changes in cholesterol binding. This is particularly relevant for the explanation given for why S1R-W9L/W11L fails to cluster in both cells and the cholesterol supplemented GUV system, while the S1R-4G mutant exhibited cholesterol-induced clustering in the GUV system but not in cells (page 7, lines 27-31).

    2. Another example is the membrane thickness experiment described at the top of page 8 and shown in Figure 4A. Shortening the S1R by deletion of 4 aa in the TM region produced a sigma-1 receptor that exhibited a more diffuse distribution when expressed in HEK293 cells. The authors appear to be attributing this only to the decreased length of the sigma-1 receptor transmembrane domain. However, it seems feasible (based on their other data) that if this construct fails to bind cholesterol, the same result would be observed. Confirming that the truncated sigma-1 receptor does in fact bind cholesterol would strengthen the argument being made here.