Bayesian modeling of COVID-19 cases with a correction to account for under-reported cases
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
The novel of COVID-19 disease started in late 2019 making the worldwide governments came across a high number of critical and death cases, beyond constant fear of the collapse in their health systems. Since the beginning of the pandemic, researchers and authorities are mainly concerned with carrying out quantitative studies (modeling and predictions) overcoming the scarcity of tests that lead us to under-reporting cases. To address these issues, we introduce a Bayesian approach to the SIR model with correction for under-reporting in the analysis of COVID-19 cases in Brazil. The proposed model was enforced to obtain estimates of important quantities such as the reproductive rate and the average infection period, along with the more likely date when the pandemic peak may occur. Several under-reporting scenarios were considered in the simulation study, showing how impacting is the lack of information in the modeling.
Article activity feed
-
SciScore for 10.1101/2020.05.24.20112029: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar …
SciScore for 10.1101/2020.05.24.20112029: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-
