Integration of multiple imaging platforms to uncover cardiac defects in adult zebrafish

This article has been Reviewed by the following groups

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Abstract

Mammalian models have been instrumental to investigate adult heart function and human disease. However, electrophysiological differences with human hearts and high costs emphasize the need for additional models. The zebrafish is a well-established genetic model to study cardiac development and function; however, analysis of cardiac phenotypes in adult specimens is particularly challenging as they are opaque. Here, we optimized and combined multiple imaging techniques including echocardiography, magnetic resonance imaging and micro-computed tomography to identify and analyze cardiac phenotypes in adult zebrafish. Using alk5a/tgfbr1a mutants as a case study, we observed morphological and functional cardiac defects, which were undetected with conventional approaches. Correlation analysis of multiple parameters revealed an association between hemodynamic defects and structural alterations of the heart, as observed clinically. Thus, we report a comprehensive and sensitive platform to identify otherwise indiscernible cardiac phenotypes in adult zebrafish, a model with clear advantages to study cardiac function and disease.

Article activity feed

  1. ###Reviewer #3:

    This is a very interesting paper that describes a novel zebrafish cardiac phenotyping pipeline consisting of high frequency echocardiography, cardiac magnetic resonance imaging (CMR) and micro-computed tomography (micro-CT). The work presented provides proof-of-principle that this suite of elegant techniques provides high resolution images of the adult fish heart. The concerns raised relate mainly to the adoption of this pipeline as a routine phenotyping method and the extent to which the data presented can be considered as a reference set for the field.

    Pulsed wave Doppler tracings obtained from high frequency echocardiography are noted for their clarity and reproducibility. The authors took advantage of this, together with color Doppler, to identify abnormal blood flow jets in the alk5 mutant fish. These findings nicely show that echocardiography is a useful screening tool for evaluating mutants with unknown phenotypes or for those in which structural defects are anticipated.

    Echocardiography is an established method for quantification of ventricular size and function in adult zebrafish when performed by experienced operators. As noted by the authors, echocardiographic images from a single fish can be collected within minutes and this technique can be used to evaluate large numbers of fish. The real question here is when to implement the complete pipeline and in which situations echocardiography (or one of the other techniques) might be adequate. The authors might consider making some recommendations about this. For example, echocardiography would be sufficient to evaluate adult fish that are expected to have cardiomyopathy phenotypes and completion of the extended imaging pipeline may not be necessary. Procedural tolerance, potential for serial assessment, throughput and cost also need to be considered, especially when substantial numbers of fish need to be evaluated. In order to better compare echocardiography and CMR for assessment of ventricular size and contractile function, echo data for these parameters needs to be included and a comparative analysis undertaken.

    The wide range of heart rates in the echo data (58-143 bpm) is a concern and suggests that anesthetic and environmental factors are contributing to variability. The lower value of 58 bpm is notably unphysiological. These extremes of heart rate would confound cardiac assessment, particularly for ventricular size. The causes of these heart rate differences need to be identified, and at the very minimum, greater numbers of fish would need to be studied to be able to identify any biological differences between groups.

    A major limitation is the relatively small numbers of fish that have been included in this study. Although looking at 10 WT fish and 12 mutants was sufficient to demonstrate the utility of these imaging methods, there was considerable variability for many of the cardiac parameters measured and the number of WT fish, in particular, is far too small to be robust as a reference data set. If this is an important goal of the paper, then more male and female WT fish of different ages need to be studied. Data also need to be provided for reproducibility, and inter- and intra-observer variability for measurement of cardiac parameters using the different methods.

  2. ###Reviewer #2:

    In this manuscript, the authors conducted phenotypic studies of a zebrafish adult alk5a/tgfr1 mutant by integrating different technologies, including echocardiography, MRI and microCT. They selected 10 WT and 12 alk5a mutants for their studies, and identified some mild phenotypes in OFT. They conducted correlation analysis among different parameters, and then selected fish with more severe phenotypes for further morphological characterization. The strength of the manuscript is optimization of novel technologies including MRI and microCT for cardiac studies, and their integration. However, there are some notable concerns as described below.

    Major concerns:

    1. There is excessively high variation in almost all parameters among different fish in the same group. For example, heart rate ranges from 58-143 bpm. It appears that adult zebrafish naturally exhibit high phenotypic variation in cardiac functions. However, the authors need to more carefully control their experimental conditions before reaching this conclusion. It has been reported that anesthesia and water temperature might affect cardiac functions in this animal model.

    2. The experiments were not designed to deal with the excessively high variation. Fish from three different ages are phenotyped together as a single group, and the size of the group is small. This is a main weakness of the manuscript.

    3. Fig. 3-figure supplement 1: contraction of the ventricle appears rather weak (difference between F' vs F" is small). Can you calculate ejection fraction? Is the EF significantly lower than EF in wild type fish that were obtained from high frequency echo or other technologies? Low EF might indicate that the fish is far from normal physiological condition, suggesting that the technology is premature for assessing cardiac function. Moreover, there is a huge difference in heart size between WT and mutant fish (F' vs G').

  3. ###Reviewer #1:

    This study by Benisimo-Brito and colleagues describes a comprehensive integration of functional imaging approaches for adult zebrafish cardiovascular phenotyping. The authors describe combined use of echocardiography, MRI and (ex vivo) micro-CT with light- and transmission electron microscopy to study alk5a-mutant zebrafish. They were able to identify multiple altered phenotypic parameters including abnormal hemodynamics (retrograde blood flow), compromised functional output, and morphological defects, including expanded outflow tract and altered atria and aortae. The authors were also able to nicely correlate the extent of morphological defects with function, across a highly variable range in severity of phenotypes.

    This is an informative and elegant use of combined imaging platforms to study adult zebrafish; which has thus far been very challenging, given their opaque nature and the need for specialised adaptation of available clinical modalities. That said, use of some of these platforms has been applied previously for imaging adult zebrafish; for example, echocardiography and MRI (Gonzalez-Rosa et al., 2014; Koth et al., 2017) and micro-CT (most recently, Ding et al., 2019). The authors acknowledge this, but it remains the case that the technical novelty, as applied to functional cardiovascular imaging, is compromised. Instead, the strength here is in the combined, integrated use of multiple platforms. This study on the whole provides a very nice proof-of-principle, but it is unclear how this will be widely adopted by zebrafish laboratories elsewhere, given the need for significant high-end imaging facilities and appropriate in-house expertise. Moreover, the methodologies to adapt the platforms for zebrafish studies are not sufficiently well described herein to enable others to readily adopt.

    Other specific comments:

    1. The statement on page 8 needs qualifying. MRI has been used previously beyond generating static images in adult zebrafish: Koth et al., (2017) documented longitudinal imaging of live adult zebrafish during heart regeneration.

    2. The monitoring of heart rate using self-gating (Figure 3, figure supplement 1C-C') is a nice addition - did the authors explore the use of telemetry probes to record the ECG, as this would be a novel addition to what has gone before?

    3. Regarding the correlation analysis on page 10 the authors note 32 parameters. What are the prospects for applying machine learning/AI (eg. automated image analysis algorithms) here to enhance the number of parameters that can be recovered? This in turn would increase the depth of phenotyping and further inform the phenotypic-functional association.

    4. The inherent variability of phenotypes between individuals is potentially a significant issue for basic studies, despite mapping to human variation in disease progression/outcome. Given the assumed relatively in-bred nature of the mutant background, why is there such variability and does this reflect on the sensitivity of the imaging? The authors note age and body size (page 11) as influencing variation; if they were to image fish of the same age (and sex) and within a narrow body size range is this variability reduced?

    5. As under the general comment above, the methodology is insufficient in places for others to adopt the described imaging platform(s); for example, under echocardiography (page 19) the authors loosely describe a "bed made of modelling clay"- more details are required here and elsewhere to facilitate others utilising similar platforms.

    6. Under the MRI procedure the authors decided to analyze specimens in a container without water flow, to reduce the imaging time to less than 20 minutes and consequently to maintain survival. This relatively short imaging time is reflected in the low resolution and somewhat suboptimal images shown in Figure 3C-D. Moreover, in the absence of water flow and gill perfusion it is unclear how any functional parameters obtained are physiologically meaningful? This approach renders the use of MRI more for 3D live imaging than for interrogating function. In the previous MRI study, by Koth and co-workers (2017), live adult zebrafish were placed under anaesthesia and physiological conditions, i.e. upright in water and with gills suitably perfused. This enabled imaging for several hours and with a 100% recovery rate and consequently, the resolution and image quality were higher and the functional parameters more physiologically relevant. The current MRI approach ought to be at least comparable in terms of quality of outputs as that which has gone before.

  4. ##Preprint Review

    This preprint was reviewed using eLife’s Preprint Review service, which provides public peer reviews of manuscripts posted on bioRxiv for the benefit of the authors, readers, potential readers, and others interested in our assessment of the work. This review applies only to version 1 of the manuscript.

    ###Summary:

    The reviews highlight the value of imaging adult zebrafish to evaluate cardiovascular structure and function. However, they point out that each of the three imaging technologies has been reported before, and suggest that the manuscript would be strengthened by a more critical comparison between the imaging modalities. The reviewers also raised concerns about the value of the data as a reference for cardiac function parameters, given the small numbers of WT fish, variability in WT fish, and the lack of data for reproducibility, and inter- and intra-observer variability for the various cardiac parameters. Lastly, they felt that the platforms are highly technical and require significant resource and specialist insight into adaptation for use on zebrafish, thus making it unclear how it will be applicable more broadly and within other laboratories in the field.