Analysis of ultrasonic vocalizations from mice using computer vision and machine learning
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (eLife)
Abstract
Mice emit ultrasonic vocalizations (USVs) that communicate socially relevant information. To detect and classify these USVs, here we describe VocalMat. VocalMat is a software that uses image-processing and differential geometry approaches to detect USVs in audio files, eliminating the need for user-defined parameters. VocalMat also uses computational vision and machine learning methods to classify USVs into distinct categories. In a data set of >4000 USVs emitted by mice, VocalMat detected over 98% of manually labeled USVs and accurately classified ≈86% of the USVs out of 11 USV categories. We then used dimensionality reduction tools to analyze the probability distribution of USV classification among different experimental groups, providing a robust method to quantify and qualify the vocal repertoire of mice. Thus, VocalMat makes it possible to perform automated, accurate, and quantitative analysis of USVs without the need for user inputs, opening the opportunity for detailed and high-throughput analysis of this behavior.
Article activity feed
-
-
This manuscript is in revision at eLife
The decision letter after peer review, sent to the authors on August 28 2020, follows.
Summary
This manuscript presents new tool to detect and classify mice ultrasonic vocalizations (USVs). The tool (VocalMat) applies neural network technology for categorization of the various USVs to predetermined categories of pup calls. The paper in the form submitted seems to fit more as a methodology paper. Indeed, the authors state that the goal of their work is to: "create a tool with high accuracy for USV detection that allows for the flexible use of any classification method."
The paper is well written and presents a useful tool to identify and classify USVs of mice. However, the reviewers think that the authors did not provide enough supporting evidence to claim that their method is significantly …
This manuscript is in revision at eLife
The decision letter after peer review, sent to the authors on August 28 2020, follows.
Summary
This manuscript presents new tool to detect and classify mice ultrasonic vocalizations (USVs). The tool (VocalMat) applies neural network technology for categorization of the various USVs to predetermined categories of pup calls. The paper in the form submitted seems to fit more as a methodology paper. Indeed, the authors state that the goal of their work is to: "create a tool with high accuracy for USV detection that allows for the flexible use of any classification method."
The paper is well written and presents a useful tool to identify and classify USVs of mice. However, the reviewers think that the authors did not provide enough supporting evidence to claim that their method is significantly superior to other tools in the literature that attempted USV classification. For example Vogel et al (2019) - https://doi.org/10.1038/s41598-019-44221-3] - reported very similar (85%) accuracy using more mainstream ML approaches than attempted in this study with CNNs.
Moreover, some of the reviewers were not convinced that the comparison to other tools was conducted in an unbiased and completely fair manner and that the approach described in this paper really represents a significant advantage over other tools. For example, two reviewers claim that the authors used DeepSqueak on their dataset without properly training it for this type of data, while their tool is specifically trained for it. Also, the reviewers expect to see a confusion matrix to assess model performance and establish whether the model does indeed replicate accurately classes (or how skewed it is with dominating classes).
Overall, all the reviewers agree that they would like to see a more rigorous attempt to validate the findings presented (ideally also on an external database) and proper (unbiased) comparison with other similar software, to justify the claim that VocalMat performance in classification of USVs is indeed superior and novel to the methods already in use.
If the authors wish to have the manuscript considered as a research paper and not in the form of a methods paper they should change the focus of the paper and provide more data showing a novel biological application of their pup calls classification findings. If not, we will be happy to consider a suitably revised version of the manuscript for the Tools and Resources section of eLife.
-