Converting endogenous genes of the malaria mosquito into simple non-autonomous gene drives for population replacement

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Gene drives for mosquito population replacement are promising tools for malaria control. However, there is currently no clear pathway for safely testing such tools in endemic countries. The lack of well-characterized promoters for infection-relevant tissues and regulatory hurdles are further obstacles for their design and use. Here we explore how minimal genetic modifications of endogenous mosquito genes can convert them directly into non-autonomous gene drives without disrupting their expression. We co-opted the native regulatory sequences of three midgut-specific loci of the malaria vector Anopheles gambiae to host a prototypical antimalarial molecule and guide-RNAs encoded within artificial introns that support efficient gene drive. We assess the propensity of these modifications to interfere with the development of Plasmodium falciparum and their effect on fitness. Because of their inherent simplicity and passive mode of drive such traits could form part of an acceptable testing pathway of gene drives for malaria eradication.

Article activity feed

  1. ###Reviewer #3:

    Summary:

    Gene drives are alleles that bias their inheritance to spread through a population. Engineered gene drives could potentially be used to spread genes that prevent malaria transmission in mosquitoes. In this study, the authors develop a proof-of-principle of effector components that would be part of a proposed integral gene drives. Such drives are different from standard gene drives by separating the Cas9 and effector components at different loci, with each one having biased inheritance, a useful strategy if the Cas9 has a substantial fitness cost (though it remains unclear if this is the case). They can also more easily target conserved sites of important genes compared to a standard drive, though this is not unique to the integral gene drive strategy. The Cas9 and effector components would be expressed from natural promoters, with introns and translation skipping utilized so that the original gene works properly and so gRNAs can be expressed within the intron. The authors showed that the effector component of such a drive performed as expected, and that both effectors and the target gene were expressed. Overall, the manuscript is a mostly sound technical demonstration of the effector component of an integral gene drive.

    Review:

    1. It's unclear how exactly resistance alleles would be dealt with in the author's strategy. While an integral gene drive could target an essential gene so that resistance alleles are nonviable, that doesn't seem to be the strategy here, since the authors needed to target a gene with a promoter that would be a good match for their effector. The need for both an essential gene and a suitable promoter in one package may thus limit the use of the integral gene drive strategy. Higher fitness costs associated with disruption of the gene may partially ameliorate this issue, but this was not confirmed in the current study (transgenic strains had lower fitness, but was this due to the drive, the effector, or the reduced expression of the host target gene?).

    2. The authors removed their marker genes by surrounding them with LoxP sites and crossing their lines to Cre. This was justified since the authors believed that the presence of the marker would interfere with expression of the target gene, causing fitness issues. However, the authors found no sign of fitness reduction based on anecdotal (?) observations. Were these observations actually quantified, in which case they should be supplemental material? It could be particularly interesting in light of the fact that even without the marker, the transgenic strains suffered fitness effects. It would be nice if the decision to remove the marker was better justified in this section, based on the next section where it was found that the marker interfered with effector expression. Perhaps even combining or reversing the order of the sections would be appropriate (for example, consider first saying that the marker interferes with expression, then mention how this was expected and the marker could be removed, solving the problem).

    3. Based on figure 3D-E, it appears that the target host gene has reduced expression even after the marker is removed. This is quite important for future considerations, yet seems to be glossed over. For example, if a target is chosen that can effectively help remove resistance alleles due to fitness costs from disrupting the target gene, this means that the gene drive will also suffer fitness costs.

    4. The fitness analysis examining fecundity and hatch rates is not very informative. While similar fitness effects among the transgenic strains lends some weak evidence that inbreeding may account for the fitness reduction, variability between individuals certainly does not (after all, wild-type individuals were also highly variable). Also, if the Cre line has a different background than G3, wouldn't all the lines have received some of this background from prior crosses? Perhaps this could be the answer. It would nonetheless have been better for the authors to outcross the lines before inbreeding them, with similar inbreeding for the wild-type control, before doing this experiment. Because of the issues with this experiment, I'd suggest that it is conducted again with better controls or is moved to the supplement.

    5. It's hard to believe that no end-joining took place, even though the last sentence of the results indicates that no end-joining was detected. Did the authors not sequence any progeny with the drive, to look for end-joining products formed from maternally deposited Cas9? Other studies with vasa-Cas9 in Anopheles saw this phenomenon occur at a high rate. For end-joining products formed as an alternative to HDR, was it 21 individuals that were sequenced (nine with Aper1 and twelve form the full AP2 sequencing)?

  2. ###Reviewer #2:

    Hoermann et al. present a new gene engineering concept for disease vector mosquitoes, whereby endogenous mosquito genes are hijacked to express a heterologous effector peptide intended to render mosquitoes resistant to human pathogens. In addition, a synthetic intron added within the effector-coding sequence will express gRNAs for the CRISPR-Cas9 system, recognizing the transgene's own wild-type insertion locus. In the presence of a source of Cas9, the effector gene is thus able to home into a wild-type chromosome, triggering a gene drive effect that can increase the frequency of the modification in the mosquito population. A fluorescent marker, also cloned within the intron, is used at early steps to track the transgene, but is subsequently removed by Cre/lox excision to restore host gene + effector expression and to result in minimal genetic modification.

    This is an extremely elegant procedure and a remarkable technical achievement, especially in such a difficult species as Anopheles gambiae. The choice of midgut-specific promoters to express anti-malaria effectors makes sense to target early stages of development of parasites, before they had a chance to amplify in the mosquito. Using endogenous regulatory sequences without a need for promoter cloning alleviates the tedious work of individual promoter characterization. The molecular designs are well described, and the results likely to have a large future impact in the development of vector control tools, notwithstanding some weakness in assessing the antiparasitic effect of Scorpine in the transgenic mosquitoes (see below). I agree that this type of transgene should facilitate semi-field or field testing of candidate anti-parasitic effectors, before any true gene drive intervention is envisaged.

    Major Comments:

    P. falciparum transmission blocking assays - Fig. 5:

    I have several questions about figure 5.

    -Are mosquitoes with 0 parasite taken into account in the calculation of the mean and median? This should be explained in the legend or in Exp procedures

    -Several replicates have been pooled to generate the figure, for each transgenic strain. Is this legitimate? i.e. were the mean oocyst number and prevalence, reflecting the quality of each ookinete culture, similar enough between replicates to allow pooling? If not, it would be more legitimate to show the result of a single representative replicate. Please provide a table with the raw parasite counts of the separate replicates in a supplemental file so that readers can better judge these results. I note that panel C is very useful.

    -I find the bar graph hard to interpret. The median M is represented either as a stroke inside some bars, or overlapping the x axis when M=0. The size of the bar doesn't represent the mean, m. Does it represent a confidence interval? This must be explained in the legend. Maybe a dot plot where each dot represents the parasite counts of one mosquito would better represent these results?

    -From my point of view, mosquito numbers in some of these infections may be too low to yield solid results. Especially in the ScoG-AP2 experiment: 37 mosquitoes in the G3 control with a prevalence of 51% means that only 19 mosquitoes across R=2 replicates contained parasites. This low number is associated with a risk of atypical outliers in the parasite counts, even if the statistical tests presented here show good significance. In the panel C analysis of these values, we see from the size of the squares that the replicate that had the highest statistical significance also had the smallest number of mosquitoes. The replicate with a larger N has only one *. For the Aper1-Sco line, N is large and the statistical significance is high (although panel C shows that one of the 4 replicates showed no difference) but I'm still somewhat unconvinced of the effect of scorpine in this line: the mean only drops from 10 to 6 parasites, prevalence drops from 37 to 21%. Combining this moderate effect with the facts that (1) some replicates sometimes show no Scorpine effect, (2) the Sco-CP line, which has a comparably high level of scorpine expression according to Suppl fig . 3, shows the exact opposite, i.e. pro-parasitic effect, makes me doubt the antiparasitic effect of scorpine.

    In the case of the ScoG-AP2 line, scorpine expression is only 1/10 to 1/8 of the expression in the other two lines, but seems to have a similar effect as in the highest (Aper1) expressing line: one possibility is that fusion to GFP stabilizes Scorpine so that lower expression results in higher activity, but a milder effect would have been logical if scorpine had a dose-dependent effect.

    One caveat of these experiments is that the genetic background of the control mosquitoes (G3) is not exactly the same as the transgenics (G3 x KIL). There is a possibility that the KIL background contributed some alleles conferring elevated Plasmodium resistance (or the opposite in the case of Sco-CP). I would find the results more trustable if a control of equivalent genetic background could have been generated for each transgenic strain (in the process of homozygous line selection, the homozygous WT siblings could have been retained to serve as specific controls, though I know how demanding this work would have been...).

    Another caveat is that we don't know the precise kinetics (e.g. between 0-36h post blood meal) of the scorpine protein midgut concentration in each transgenic line, and we don't know at what time point after the blood meal parasites would be most susceptible to killing by scorpine (probably between 3 and 24h, time after which they transform into protected cysts). Taken together, the scorpine data is not highly conclusive and there remains much uncertainty about the efficacy of transgenically expressed Scorpine as an anti-plasmodium molecule. I'm not requesting additional experiments (though future long term assessments of these transgenic lines with new isogenic controls would be very interesting), but I invite the authors to downstate scorpine's potential effectiveness as an antimalarial effector in vivo. This does not decrease the importance of this work of which scorpine is only one aspect. A candidate molecule had to be chosen for these proof-of-principle experiments. Scorpine may not have been a very lucky choice, but its moderate (or opposite) effect should be seen as an interesting result in itself. The way is now open to test other possible candidates.

  3. ###Reviewer #1:

    This is a compelling demonstration of a number of important steps that take population replacement gene drive for malaria control closer to reality. I have no major concerns and think the manuscript shows the authors have made substantial progress in a) taking Integral Gene Drive (which is a recent idea from senior author Windbichler) into mosquitoes, b) successfully removing marker genes to make the whole system more effective, c) demonstrating that the approach works to express a molecule to reduce parasite infection rates in the lab while also making it possible to test these effector molecules in natural settings without risk of accidental drive release, and d) also showing that drive is successful. My comments are only minor and I think the study is high impact.

  4. ##Preprint Review

    This preprint was reviewed using eLife’s Preprint Review service, which provides public peer reviews of manuscripts posted on bioRxiv for the benefit of the authors, readers, potential readers, and others interested in our assessment of the work. This review applies only to version 1 of the manuscript.

    ###Summary:

    This paper demonstrates a number of important steps necessary for implementing the recently proposed "integral gene drive" strategy. In this approach, endogenous mosquito genes are hijacked to express a heterologous effector peptide intended to render mosquitoes resistant to human pathogens. Such drives differ from standard gene drives by separating the Cas9 and effector components at different loci, with each one having biased inheritance. This could be useful if the Cas9 has a substantial fitness cost and could also more easily target conserved sites of important genes compared to a standard drive. While it remains to be seen how effective this approach will be in practice, the paper provides valuable insights into how such gene drives could work in mosquitoes.