Human and macaque pairs employ different coordination strategies in a transparent decision game

Curation statements for this article:
  • Curated by eLife

    eLife logo

    eLife Assessment:

    This paper by Möller and colleagues investigates and compares spontaneous turn-taking behavior by pairs of macaque monkeys and human participants in a social coordination game. The study uses a novel format for interaction - the "transparent game" in which subjects play together on a clear glass screen, so that decisions take on properties of continuousness. The results suggest differences between species in their tendencies toward cooperative, mutually beneficial behaviors, with humans exhibiting more prosocial tendencies. Interestingly, training with humans could encourage the monkeys to become less selfish and adopt a turn-taking strategy. The behavior analyses are rigorous and convincingly support the conclusions, and the study is likely to be of interest to researchers in the field of social neuroscience and decision-making, as well as to a more general audience who studies cognition, psychology, economics, especially game theory, and animal behavior.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. Reviewer #2 agreed to share their name with the authors.)

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Many real-world decisions in social contexts are made while observing a partner’s actions. To study dynamic interactions during such decisions, we developed a setup where two agents seated face-to-face to engage in game-theoretical tasks on a shared transparent touchscreen display (‘transparent games’). We compared human and macaque pairs in a transparent version of the coordination game ‘Bach-or-Stravinsky’, which entails a conflict about which of two individually-preferred opposing options to choose to achieve coordination. Most human pairs developed coordinated behavior and adopted dynamic turn-taking to equalize the payoffs. All macaque pairs converged on simpler, static coordination. Remarkably, two animals learned to coordinate dynamically after training with a human confederate. This pair selected the faster agent’s preferred option, exhibiting turn-taking behavior that was captured by modeling the visibility of the partner’s action before one’s own movement. Such competitive turn-taking was unlike the prosocial turn-taking in humans, who equally often initiated switches to and from their preferred option. Thus, the dynamic coordination is not restricted to humans but can occur on the background of different social attitudes and cognitive capacities in rhesus monkeys. Overall, our results illustrate how action visibility promotes the emergence and maintenance of coordination when agents can observe and time their mutual actions.

Article activity feed

  1. eLife Assessment:

    This paper by Möller and colleagues investigates and compares spontaneous turn-taking behavior by pairs of macaque monkeys and human participants in a social coordination game. The study uses a novel format for interaction - the "transparent game" in which subjects play together on a clear glass screen, so that decisions take on properties of continuousness. The results suggest differences between species in their tendencies toward cooperative, mutually beneficial behaviors, with humans exhibiting more prosocial tendencies. Interestingly, training with humans could encourage the monkeys to become less selfish and adopt a turn-taking strategy. The behavior analyses are rigorous and convincingly support the conclusions, and the study is likely to be of interest to researchers in the field of social neuroscience and decision-making, as well as to a more general audience who studies cognition, psychology, economics, especially game theory, and animal behavior.

    (This preprint has been reviewed by eLife. We include the public reviews from the reviewers here; the authors also receive private feedback with suggested changes to the manuscript. Reviewer #2 agreed to share their name with the authors.)

  2. Reviewer #1 (Public Review):

    This study investigates and compares spontaneous turn-taking behavior in pairs of macaque monkeys and human participants. The authors use a transparent, bi-directional touch screen to facilitate visual interactions while pairs performed a task in which payouts increased with coordinated responses. They found that most human pairs converged on a turn-taking strategy without verbal communication or instruction from experimenters, but monkeys coordinated with simpler strategies that did not involve turn-taking and could be accomplished without attending to the partner's responses. Interestingly, the monkeys could learn to attend to a partner's responses with explicit training but used this to interact competitively, where the faster animal led and the slower followed his responses. Together, the results suggest differences between species in their tendencies toward cooperative, mutually beneficial behaviors.

    Specific strengths of the study include the novel task apparatus and experimental design, and unique cross-species comparisons. In addition, the analyses are appropriate and results are compelling. The approach that tests monkeys with a human "confederate" is clever, and clarified that their performance with other monkeys did not result from an inability to coordinate with another agent. While the species differences are compelling, the main weakness is that there are different potential explanations that can't be teased apart by the present study. On one hand, different behaviors may arise from qualitatively different social motivations, such as humans placing value on equity or their partner's success that monkeys do not. On the other hand, the rewards the monkeys were working for are qualitatively different and potentially more motivating, and this could drive them toward a more competitive approach to the task, even if they could, under other circumstances, display the same social motivations as humans. More in-depth consideration of how different task strategies relate to earned rewards could provide some insights on this confound.

  3. Reviewer #2 (Public Review):

    In this new exciting manuscript, Möller and colleagues studied different behavioral patterns of human and non-human primate subjects in a transparent social coordination game. In the task, two subjects chose between two visible options, in which each subject preferred a different option. Critically, the reward level also varied based on a payoff matrix. Choosing the non-preferred options by both subjects resulted in the lowest rewards, whereas choosing the preferred options by both resulted in medium-sized rewards for both. However, when both subjects chose the same option (i.e., coordinated), which was preferred by one subject but not preferred by the other subject, both received the highest rewards, with the subject who indicated the preferred option receiving a higher reward than the other. Therefore, the optimal strategy would be a dynamic turn-taking strategy in which both subjects choose the same option while taking turns over time. The authors found that about half of the human pairs adopted the turn-taking strategy. On the other hand, monkeys performed the task mostly in a selfish manner - both monkeys tended to choose their preferred options. Interestingly, in the human-monkey pairing, the monkeys could learn the turn-taking patterns. Furthermore, a detailed examination showed that turn-taking patterns in humans indicated a prosocial strategy, while turn-taking patterns in monkeys reflected a competitive strategy, where a slow-responding monkey followed the option of the fast-responding monkey. Together, the results convincingly demonstrate very interesting similarities and differences between humans and monkeys in carrying out social coordination.

    Strength: This study provides convincing results with good sample size and rigorous data analyses. The transparent task design uniquely allowed the authors to examine the visual social aspects underlying social coordination. The direct comparison between human and monkey subjects, as well as examining human-monkey pairs were important and informative. Overall, the results provide novel insights into other studies in non-human primates that aim to understand the common social decision-making mechanism of both human and non-human primates.

    Weakness: In the situation when the human subjects were paired with monkey subjects, it was unclear what detailed aspects of this experience directly led to the increase in the turn-taking behavior in the monkey subjects. About half of the human subjects behaved more like the monkey subjects by not exhibiting the dynamic turn-taking behavior, yet the reasons behind this within-group difference were unclear.

  4. Reviewer #3 (Public Review):

    This study examines behavior of humans and monkeys in a standard two-player game theory game called Bach or Stravinsky (also known as Battle of the Sexes) and, more technically, the iterated version of this game. This game is less well studied than the Prisoner's Dilemma or the Stag Hunt, but has an interesting twist relative to these - the optimal strategy in an iterated version is one of two options that provide a better reward to one player. For this reason, humans will typically show alternating behavior. This game then lets us ask whether and how well monkeys will also come to the same alternating behavioral pattern.

    The study is unique in that it uses a novel format for interaction - the "transparent game" in which subjects press their fingers on a clear glass screen. Among other benefits, this feature allows the experimenters to study dynamics of choice, so that the decision takes on properties of continuousness. That in turn allows for reaction time biases.

    In summary, this is an excellent and fascinating study. The authors have asked important and interesting questions, and have done a careful study that provides answers. I anticipate that their "transparent game" technique will become more popular due to its utility.

    Another strength of this paper is the combination of human and macaque players (and the return of the macaque to the macaque-macaque group play). The result is exciting and surprising. This is a novel and remarkable element of the study and a source of great strength.

    Limitation - lots of conceptual differences, including primary vs secondary reward, expectations, that may be due to learning/socialization. Having said that, these need to be acknowledged, but the study is good anyway. I will also note the authors already include a good and healthy limitation section in the Discussion.