Vimentin intermediate filaments and filamentous actin form unexpected interpenetrating networks that redefine the cell cortex

Read the full article

Abstract

Filamentous actin (F-actin) and vimentin intermediate filaments (VIFs) are two major cytoskeletal components; they are generally thought to be spatially compartmentalized and to have distinctly different and independent functions. Here we combine two imaging methods, high-resolution structured illumination microscopy and cryo-electron tomography, as well as functional characterizations, to show that unexpectedly, VIFs and F-actin have extensive structural interactions within the cell cortex and form interpenetrating networks. These interactions have very important functional consequences for cells, which are broadly significant given the wide range of processes attributed to F-actin. These results profoundly alter our understanding of the contributions of cytoskeletal components and counter the common belief that VIFs and F-actin are independent in both structure and function.

Article activity feed