Reading instruction causes changes in category-selective visual cortex
Curation statements for this article:-
Curated by eLife
eLife assessment
The study is important in that it investigates the effect of reading acquisition on neural responses experimentally, randomly assigning children to one of two training groups. The results provide solid evidence for learning-related changes in the (late) neural response to words, but it is not clear whether this reflects category-specific changes in visual cortex tuning. As such, the study may not yet provide a clear answer to the neuronal recycling debate within which it was framed. This paper is of potential interest to a broad audience of neuroscientists, as it addresses fundamental questions regarding the re-organization of functional cortical responses associated with learning to read.
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (eLife)
Abstract
Article activity feed
-
-
eLife assessment
The study is important in that it investigates the effect of reading acquisition on neural responses experimentally, randomly assigning children to one of two training groups. The results provide solid evidence for learning-related changes in the (late) neural response to words, but it is not clear whether this reflects category-specific changes in visual cortex tuning. As such, the study may not yet provide a clear answer to the neuronal recycling debate within which it was framed. This paper is of potential interest to a broad audience of neuroscientists, as it addresses fundamental questions regarding the re-organization of functional cortical responses associated with learning to read.
-
Reviewer #1 (Public Review):
This study used MEG to investigate the neural changes induced by two weeks of reading instruction in pre-literate children. The study addresses a topic of great importance, measuring neural changes resulting from learning to read. While there have been several previous studies investigating this question, this may be the first study to use a truly experimental approach (i.e., involving random assignment).
There are some weaknesses in the current presentation of results that limit the conclusions that can be drawn. First, there is no control region (e.g., the right FFA or object-selective LO) to show that learning to read specifically affected tuning in a region corresponding to the VWFA, as hypothesized. This is important also to exclude more general differences between conditions (e.g., increased attention …
Reviewer #1 (Public Review):
This study used MEG to investigate the neural changes induced by two weeks of reading instruction in pre-literate children. The study addresses a topic of great importance, measuring neural changes resulting from learning to read. While there have been several previous studies investigating this question, this may be the first study to use a truly experimental approach (i.e., involving random assignment).
There are some weaknesses in the current presentation of results that limit the conclusions that can be drawn. First, there is no control region (e.g., the right FFA or object-selective LO) to show that learning to read specifically affected tuning in a region corresponding to the VWFA, as hypothesized. This is important also to exclude more general differences between conditions (e.g., increased attention to letters after two weeks of training to recognize letters). Second, the statistical pattern of results is closely linked to the specific time window of interest (135-235 ms after stimulus onset) but there is no evidence that this time window is selective for words in this age group. For comparison, the face-selective response in children of this age is only observed at around 250 ms after onset (Taylor et al., Clinical Neurophysiology 1999). Third, the power analysis is very optimistic, with an estimated effect size of d=4.65. Considering the between-subjects design, the relatively low SNR of data in young children, and the multiple comparisons that are inherent to neuroimaging data, the study may be underpowered to detect the likely subtle effects of the 2 weeks of training.
-
Reviewer #2 (Public Review):
Yeatman and colleagues used MEG in pre-literate children following a literacy intervention program to investigate changes in cortical responses to visual images of words, faces, and objects. Children who participated in a literacy intervention program showed improvements in letter knowledge and increased neural responses to words relative to an object category. The authors interpret these findings in the framework of the neuronal recycling hypothesis proposed by Dehaene and colleagues. This is important work. The opportunity to use a causal manipulation to study neural and behavioral development in humans is rare. The finding of neural changes from just 2 weeks of intervention is striking. The scope of the work extends beyond understanding brain development and has potential relevance for social and …
Reviewer #2 (Public Review):
Yeatman and colleagues used MEG in pre-literate children following a literacy intervention program to investigate changes in cortical responses to visual images of words, faces, and objects. Children who participated in a literacy intervention program showed improvements in letter knowledge and increased neural responses to words relative to an object category. The authors interpret these findings in the framework of the neuronal recycling hypothesis proposed by Dehaene and colleagues. This is important work. The opportunity to use a causal manipulation to study neural and behavioral development in humans is rare. The finding of neural changes from just 2 weeks of intervention is striking. The scope of the work extends beyond understanding brain development and has potential relevance for social and educational policies. The study appears well-designed and includes an important control group. Overall, I am enthusiastic about this work. However, it is unclear whether the results are specific to the area of interest - the visual word form area. The increased response to words from the intervention appears quite widespread cortically (Figure 5). These issues are central to the idea of neuronal recycling and the authors' proposal that training leads to increased modularization. Thus, the results currently only provide modest support for the conclusions. Additionally, aspects of the analysis need clearer motivation/justification.
-
Reviewer #3 (Public Review):
Yeatman et al. tested whether the emergence of brain regions that selectively process novel visual stimuli like words occur at the expense of cortical representations of other stimuli like faces and objects. They conducted a randomized controlled trial with preschool children (five years of age) that were either taught reading or oral language skills. They found that being taught reading versus oral language skills induced different patterns of change in category-selective regions of the visual cortex. Their main conclusion is that reading instruction enhanced the response to text but did not diminish the response to other categories.
The main novelty of this study seems to be that they conducted a randomized controlled trial. The study is well crafted and executed. However, based on the current methodology, …
Reviewer #3 (Public Review):
Yeatman et al. tested whether the emergence of brain regions that selectively process novel visual stimuli like words occur at the expense of cortical representations of other stimuli like faces and objects. They conducted a randomized controlled trial with preschool children (five years of age) that were either taught reading or oral language skills. They found that being taught reading versus oral language skills induced different patterns of change in category-selective regions of the visual cortex. Their main conclusion is that reading instruction enhanced the response to text but did not diminish the response to other categories.
The main novelty of this study seems to be that they conducted a randomized controlled trial. The study is well crafted and executed. However, based on the current methodology, it is unclear if they shed novel light on the cortical recycling hypothesis.
-