This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
The ongoing COVID-19 pandemic has created major public health and socio-economic challenges across the United States. Among them are challenges to the educational system where college administrators are struggling with the questions of how to mitigate the risk and spread of diseases on their college campus. To help address this challenge, we developed a flexible computational framework to model the spread and control of COVID-19 on a residential college campus. The modeling framework accounts for heterogeneity in social interactions, activities, environmental and behavioral risk factors, disease progression, and control interventions. The contribution of mitigation strategies to disease transmission was explored without and with interventions such as vaccination, quarantine of symptomatic cases, and testing. We show that even with high vaccination coverage (90%) college campuses may still experience sizable outbreaks. The size of the outbreaks varies with the underlying environmental and socio-behavioral risk factors. Complementing vaccination with quarantine and mass testing was shown to be paramount for preventing or mitigating outbreaks. Though our quantitative results are likely provisional on our model assumptions, sensitivity analysis confirms the robustness of their qualitative nature.
]]>Article activity feed
-
-
SciScore for 10.1101/2021.06.03.21258315: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources It follows a prescribed dynamic pattern (shown in Figure 2(A)); specifically we use function B(t) = t ke−kt of steepness k, and define b(d) = bM B(d/L) where bM is peak infectivity and L is the mean duration. A))suggested: NoneResults from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdent…
SciScore for 10.1101/2021.06.03.21258315: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
NIH rigor criteria are not applicable to paper type.Table 2: Resources
Software and Algorithms Sentences Resources It follows a prescribed dynamic pattern (shown in Figure 2(A)); specifically we use function B(t) = t ke−kt of steepness k, and define b(d) = bM B(d/L) where bM is peak infectivity and L is the mean duration. A))suggested: NoneResults from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-