A Global Study on the Correlates of Gross Domestic Product (GDP) and COVID-19 Vaccine Distribution
This article has been Reviewed by the following groups
Listed in
- Evaluated articles (ScreenIT)
Abstract
This study aimed to explore the association between the GDP of various countries and the progress of COVID-19 vaccinations; to explore how the global pattern holds in the continents, and investigate the spatial distribution pattern of COVID-19 vaccination progress for all countries. We have used consolidated data on COVID-19 vaccination and GDP from Our World in Data, an open-access data source. Data analysis and visualization were performed in R-Studio. There was a strong linear association between per capita income and the proportion of people vaccinated in countries with populations of one million or more. GDP per capita accounts for a 50% variation in the vaccination rate across the nations. Our assessments revealed that the global pattern holds in every continent. Rich European and North-American countries are most protected against COVID-19. Less developed African countries barely initiated a vaccination program. There is a significant disparity among Asian countries. The security of wealthier nations (vaccinated their citizens) cannot be guaranteed unless adequate vaccination covers the less affluent countries. Therefore, the global community should undertake initiatives to speed up the COVID-19 vaccination program in all countries of the world, irrespective of their wealth.
Article activity feed
-
-
SciScore for 10.1101/2021.12.31.21268580: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter:…
SciScore for 10.1101/2021.12.31.21268580: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Ethics not detected. Sex as a biological variable not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We did not find any issues relating to the usage of bar graphs.
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
Results from scite Reference Check: We found no unreliable references.
-