Personalized Virus Load Curves for Acute Viral Infections

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

We introduce an explicit function that describes virus-load curves on a patient-specific level. This function is based on simple and intuitive model parameters. It allows virus load analysis of acute viral infections without solving a full virus load dynamic model. We validate our model on data from mice influenza A, human rhinovirus data, human influenza A data, and monkey and human SARS-CoV-2 data. We find wide distributions for the model parameters, reflecting large variability in the disease outcomes between individuals. Further, we compare the virus load function to an established target model of virus dynamics, and we provide a new way to estimate the exponential growth rates of the corresponding infection phases. The virus load function, the target model, and the exponential approximations show excellent fits for the data considered. Our virus-load function offers a new way to analyze patient-specific virus load data, and it can be used as input for higher level models for the physiological effects of a virus infection, for models of tissue damage, and to estimate patient risks.

Article activity feed

  1. SciScore for 10.1101/2021.01.21.21250268: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a protocol registration statement.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.