A Robust Constitutive Model for Clays over a Wide Range of Plasticity and Overconsolidation Ratio (OCR) with Symmetric, Continuous Curvature Control of a Teardrop Yield Surface

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study addresses a key limitation of conventional clay constitutive models, which often assume linear stress paths at low stress ratios and lack a systematic link between plasticity and yield surface shape. A symmetry-consistent bounding surface plasticity framework is proposed, introducing two shape parameters, Ψ and Ω, to control curvature and scaling of the yield surface under low stress ratios. The formulation preserves a unified, smooth yield function with continuous gradients, ensuring compatibility with standard numerical integration schemes. To enhance practical applicability, a three-level calibration strategy is established, ranging from direct triaxial interpretation to empirical correlations based on oedometer-derived indices. Model performance is validated against experimental data for clays with varying plasticity, demonstrating improved representation of curved stress paths without increasing formulation complexity. The proposed approach provides a transparent and reproducible extension to existing frameworks, bridging the gap between theoretical consistency and engineering-oriented calibration.

Article activity feed