Spatiotemporal Evolution Characteristics and Drivers of TROPOMI-Based Tropospheric HCHO Column Concentration in North China
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The long-term nature of and heterogeneity in industrialization has led to high formaldehyde (HCHO) concentrations with seasonal and regional variation in North China, and this is highly influenced by changes in meteorological and population conditions. Here, we analyzed the spatial and temporal distribution characteristics of tropospheric HCHO VCD (vertical column density) and their key drivers in North China from 2019 to 2023 based on the HCHO daily dataset from TROPOMI. The results showed that the spatial distribution of tropospheric HCHO VCD in North China presented similar variation characteristics in the past 5 years, with the highest in the center, followed by the east and the lowest in the west. Seasonal variations were characterized, with the highest tropospheric HCHO VCD concentrations in summer and the lowest ones in spring. In addition, the effects of meteorological elements on HCHO VCD were analyzed based on the ERA5 dataset, and the correlation of HCHO VCD with temperature and wind was strong. In contrast, the correlation with precipitation and surface solar radiation was low, and the effects were different between the growing and non-growing seasons (the growing season, i.e., March–November, is defined as the period when the plant or a part of it actually grows and produces new tissues, while the non-growing season refers to December–the following February). Population density is directly proportional to tropospheric HCHO VCD. In this study, a higher-resolution spatial and temporal distribution model of tropospheric HCHO VCD in North China is obtained based on TROPOMI, which effectively characterizes the driving factors of HCHO VCD. Our study provides an important reference for developing of air pollution control measures in North China.