A System Error Self-Correction Target-Positioning Method in Video Satellite Observation

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Satellite-based target positioning is vital for applications like disaster relief and precision mapping. Practically, satellite errors, e.g., thermal deformation and attitude errors, lead to a mix of fixed and random errors in the measured line-of-sight angles, resulting in a decline in target-positioning accuracy. Motivated by this concern, this study introduces a systematic error self-correction target-positioning method under continuous observations using a single video satellite. After analyzing error sources and establishing an error-inclusive positioning model, we formulate a dimension-extended equation estimating both target position and fixed biases. Based on the equation, a projection transformation method is proposed to obtain the linearized estimation of unknown parameters first, and an iterative optimization method is then utilized to further refine the estimate. Compared with state-of-the-art algorithms, the proposed method can improve positioning accuracy by 98.70% in simulation scenarios with large fixed errors. Thus, the simulation and actual data calculation results demonstrate that, compared with state-of-the-art algorithms, the proposed algorithm effectively improves the target-positioning accuracy under non-ideal error conditions.

Article activity feed