On the Assessment the of Large-Scale Drone Positioning Solutions Using 4G and 5G Networks in Metropolitan Areas
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In urban environments, the accuracy of traditional Global Navigation Satellite System (GNSS) could be compromised due to signal occlusion and multipath interference, particularly during critical operational phases such as drone take-off and landing. This study seeks to enhance drone positioning accuracy by integrating 4G and 5G communication antennas and applying multilateration (MLAT) techniques based on Time-Difference-of-Arrival (TDOA) and Angle of Arrival (AOA) measurements. The research focuses on a real-world case study in the metropolitan area of Valencia, Spain, where extensive mobile network data were analysed using the Cramér-Rao Lower Bound (CRLB) to identify zones with minimal positioning errors and, separately, optimal coverage for connectivity. The results suggest that integrating terrestrial antennas could enhance drone navigation; however, its current applicability remains limited to urban areas.