Modeling the Influence of Ionic Strength on Mineral Solubility in Concentrated Brine Solutions
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Mineral extraction from brine solutions is a vital issue for resource recovery in many fields of industry, especially in desalination processes. Usually, the solubility limit is viewed as a key factor that plays a determinant role in the efficiency of a prescribed process. This paper suggests the investigation of the influence of ionic strength, which is a measure of the total concentration of all dissolved ions, on the solubility limits in brines that are extracted from desalination facilities in Kuwait before discharging them into the Persian Gulf. For this purpose, the solubility of two main minerals (CaSO4 and Mg(OH)2) was measured for several values of ionic strength achieved by adjusting the concentration of the brine solutions. Brine samples were characterized and concentrated to achieve ionic strength values that are in the range of 1.1–2.0 mol/L. An adapted supersaturation-equilibration method was applied to determine solubility limits. Results show a non-linear relationship between ionic strength and the solubility limit of the target minerals, with behavior similar to that which could be found in the literature. In the case of CaSO4, it was found that the solubility exhibits an increase (salting in effect) at low ionic strength, followed by a decrease at higher ionic strength (>1.1 M) (salting-out effect). On the other hand, the solubility of Mg(OH)2 in Kuwait brine water was shown to decrease as the ionic strength increased. These trends, validated against literature data, are attributed to non-ideal solution behavior and specific ion interactions in the complex brine matrix. The findings of this work provide crucial insights for process design, enabling more precise control over precipitation steps and enhancing the overall yield and economic viability of mineral extraction from complex brine resources.