Predicting Treatment Outcomes in Patients with Drug-Resistant Tuberculosis and Human Immunodeficiency Virus Coinfection, Using Supervised Machine Learning Algorithm

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Drug-resistant tuberculosis (DR-TB) and HIV coinfection present a conundrum to public health globally and the achievement of the global END TB strategy in 2035. A descriptive, retrospective review of medical records of patients, who were diagnosed with DR-TB and received treatment, was conducted. Student’s t-test was performed to assess differences between two means and ANOVA between groups. The Chi-square test with or without trend or Fischer’s exact test was used to test the degree of association of categorical variables. Logistic regression was used to determine predictors of DR-TB treatment outcomes. A decision tree classifier, which is a supervised machine learning algorithm, was also used. Python version 3.8. and R version 4.1.1 software were used for data analysis. A p-value of 0.05 with a 95% confidence interval (CI) was used to determine statistical significance. A total of 456 DR-TB patients were included in the study, with more male patients (n = 256, 56.1%) than female patients (n = 200, 43.9%). The overall treatment success rate was 61.4%. There was a significant decrease in the % of patients cured during the COVID-19 pandemic compared to the pre-pandemic period. Our findings showed that machine learning can be used to predict TB patients’ treatment outcomes.

Article activity feed