Influence of Laser Processing Parameters on Surface Roughness and Color Formation in the Marked Zone

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study investigates the influence of laser processing parameters on the surface roughness and color formation of AISI 304 stainless steel. Experiments were conducted to explore how raster step, scanning speed, frequency, linear energy density, and overlap coefficient affect the surface characteristics of laser-marked zones. It was found that increasing the raster step from 20 µm to 80 µm led to a consistent increase in surface roughness (from 1.23 µm to 1.47 µm at 20 kHz and 25 mm/s), accompanied by a shift in color from dark brown to lighter yellow hues. In contrast, increasing scanning speed (from 25 mm/s to 125 mm/s) caused a nonlinear reduction in roughness (e.g., from 1.23 µm to 0.76 µm at 20 kHz and Δx = 20 µm), resulting in a lighter surface color. Frequency was identified as a critical factor; increasing it from 20 kHz to 100 kHz resulted in a threefold decrease in roughness (from 1.23 µm to 0.25 µm at 20 µm raster step and 125 mm/s), which correlated with a shift to brighter yellow tones. Higher linear energy density values (1.60–8.00 J/cm) increased roughness and darkened the surface color, while higher overlap coefficients produced the opposite trend. The study highlights the relationship between surface nanostructuring and the formation of stable interference colors, providing quantitative parameters for achieving desired chromatic effects. These findings establish a basis for the industrial application of laser color marking, where both aesthetic differentiation and functional enhancements—such as corrosion resistance, hydrophobicity, and antibacterial properties—are essential. Future research will focus on quantitatively evaluating the functional properties, including corrosion resistance, hydrophobicity, and durability, of the colored surfaces produced under optimized parameters. This research aims to further develop laser marking as a foundational tool for both aesthetic and functional surface engineering.

Article activity feed