Influence of Ultrasonic Vibration-Assisted Internal Grinding Parameters on Surface Morphology

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Ultrasonic vibration-assisted grinding (UVAIG) is a continuous-contact grinding process. In this process, the arc length of engagement for a single abrasive grain is longer compared to conventional grinding, which enhances the quality of the processed surface and improves processing efficiency. This study aims to establish a three-dimensional model of abrasive grains in space and to theoretically deduce the trajectory of abrasive grains during axial ultrasonic vibration-assisted internal grinding (UVAIG), as well as the resulting surface quality, measured as Ra. A three-dimensional simulation tool for ultrasonic vibration grinding micro-surfaces is developed using MATLAB. This tool enables the analysis of how various processing parameters affect workpiece surface morphology. Additionally, a predictive model is established for UVAIG simulations, allowing theoretical calculation of surface topography changes induced by different processing parameters, vibration settings, and abrasive grain models.

Article activity feed