Fatigue Reliability Analysis of Offshore Wind Turbines Under Combined Wind–Wave Excitation via Direct Probability Integral Method

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

As offshore wind turbines develop into deepwater operations, accurately quantifying the impact of stochastic excitation in complex sea environments on offshore wind turbines and conducting structural fatigue reliability analysis has become challenging. In this paper, based on long-term wind–wave reanalysis data from the South China Sea, a novel direct probability integral method (DPIM) is developed for the stochastic response and fatigue reliability analysis of the key components for the floating offshore wind turbine structures, under combined wind–wave excitation. A 5 MW floating offshore wind turbine is considered as the research object, and a comprehensive analysis of the wind turbine system is performed to assess the short-term fatigue damage at the tower base and blade root. The proposed method’s accuracy and efficiency are validated by comparing the results to those obtained from Monte Carlo simulations (MCS) and a subset simulation (SSM). Additionally, a sensitivity analysis is conducted to evaluate the impact of different environmental parameters on fatigue damage, providing valuable insights for the design and operation of FOWTs in varying sea conditions. Furthermore, the results indicate that the fatigue life of floating offshore wind turbine (FOWT) structures under combined wind–wave excitation meets the design requirements. Notably, the fatigue reliability of the wind turbine under aligned wind–wave conditions is lower compared to misaligned wind–wave conditions.

Article activity feed