TLP-Supported NREL 5MW Floating Offshore Wind Turbine Tower Vibration Reduction Under Aligned and Misaligned Wind-Wave Excitations
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This paper presents a numerical study on the structural vibrations of a TLP-supported NREL 5MW wind turbine equipped with a tuned vibration absorber (TVA) in the nacelle. The analysis was focused on tower bending deflections and was conducted using a reference OpenFAST V3.5.3 dedicated wind turbine modelling software and a finite element simulation framework based on Comsol Multiphysics V6.3 which was newly developed for this study. The obtained four-degree-of-freedom (4-DOF) tower bending model was transferred using modal decomposition to the MATLAB/Simulink R2020b environment, where a 2-DOF TLP surge/sway model and a bidirectional (2-DOF) TVA model were embedded. The wind field was approximated by a Weibull distribution of velocities (8.86 m/s mean, 4.63 m/s standard deviation). It was combined with the wave actions simulated using a Bretschneider spectrum with a significant height of 2.5 m and a peak period of 8.1 s. The TVA model used was either the standard NREL reference 20-ton passive TVA, a 10-ton passive, or a 10-ton controlled TVA (the latter two tuned to the tower’s first bending mode). The controlled TVA utilised a magnetorheological (MR) damper, either operating independently (forming a semi-active MR-TVA) or simultaneously with a force actuator, forming, in this case, a hybrid H-MR-TVA. Both aligned and 45°/90° misaligned wind–wave excitations were examined to investigate the performance of a 10-ton real-time controlled (H-)MR-TVA operating with less working space. In aligned conditions, the semi-active and hybrid MR-TVA solutions demonstrated superior tower vibration mitigation, reducing maximum tower deflections by 11.2% compared to the reference TVA and by 14.9% with regard to the structure without TVA. The reduction in root-mean-square deflection reached up to 4.2%/2.9%, respectively, for the critical along-the-waves direction, while the TVA stroke reduction reached 18.6%. For misaligned excitations, the tower deflection was reduced by 4.3%/4.8% concerning the reference 20-ton TVA, while the stroke was reduced by 22.2%/34.4% (for 45°/90° misalignment, respectively). It is concluded that the implementation of the 10-ton real-time controlled (H-)MR-TVA is a promising alternative to the reference 20-ton passive TVA regarding tower deflection minimisation and TVA stroke reduction for the critical along-the-waves direction. The current research results may be used to design a full-scale semi-active or hybrid TVA system serving a TLP-supported floating offshore wind turbine structure.