Highly Selective Laser Ablation for Thin-Film Electronics: Overcoming Variations Due to Minute Optical Path Length Differences in Plastic Substrates

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Roll-to-roll production of thin organic and large-area electronic (TOLAE) devices often involves a two-step process per functional layer: a continuous, un-pattered deposition of the film and subsequent structuring process, such as laser ablation. Thin-film organic devices should be protected using ultra-barrier films. To perform laser ablation of functional layers on top of such barrier films, in particular that of transparent electrodes, highly selective laser ablation is required to completely remove the layers without damaging the thin-film barrier layers underneath. When targeting highly selective laser ablation of indium tin oxide (ITO) on top of silicon nitride (SiN) barrier layers with a 1064 nm picosecond or 1030 nm femtosecond laser, we observed the emergence of visible large-scale patterns due to local variations in ablation quality. Our investigations using a very sensitive Raman spectroscopy setup show that the observed ablation variations stem from subtle differences in optical path length within the heat-stabilized plastic substrates. These variations are likely caused by minute, localized changes in the refractive index, introduced during the bi-axial stretching process used in film fabrication. Depending on the optical path length, these variations lead to either constructive or destructive interference between the incoming laser beam and the light reflected from the back surface of the substrate. By performing laser ablation under an angle such that the reflected and incoming laser beam do not spatially overlap, highly selective uniform laser ablation can be performed, even for two stacked optically transparent layers.

Article activity feed