Rapid Assessment of Relative Hemolysis Amidst Input Uncertainties in Laminar Flow
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Predicting absolute values of hemolysis using the power law model to guide medical device design is hampered by uncertainties stemming from four sources of model inputs: incoming/upstream velocity profiles, blood viscosity models, power law hemolysis coefficients, and obtaining accurate stress exposure times. Amidst all these uncertainties, enabling rapid assessments and predictions of relative hemolysis would still be valuable for evaluating device design prototypes. Towards achieving this objective, hemolysis data from the Eulerian modeling framework was first generated from computational fluid dynamics simulations encompassing five blood viscosity models, four sets of hemolysis power law coefficients, fully developed as well as developing velocity flow conditions, and a wide range of shear stresses, strain rates, and stress exposure times. Corresponding hemolysis predictions were also made in a Lagrangian framework via numerical integration of shear stress and residence time spatial variations under the assumption of fully developed Newtonian fluid flow. Absolute hemolysis predictions (from both frameworks) were proportional to each other and independent of the blood viscosity model. Further, relative hemolysis trends were not dependent on the hemolysis power law coefficients. However, accuracy in wall shear stresses in developing flow conditions is necessary for accurate relative hemolysis assessments.