Geomechanical Analysis of Hot Fluid Injection in Thermal Enhanced Oil Recovery
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Hot-fluid injection in thermal-enhanced oil recovery (thermal-EOR, TEOR) imposes temperature-driven volumetric strains that can substantially alter in situ stresses, fracture geometry, and wellbore/reservoir integrity, yet existing TEOR modeling has not fully captured coupled thermo-poroelastic (thermo-hydro-mechanical) effects on fracture aperture, fracture-tip behavior, and stress rotation within a displacement discontinuity method (DDM) framework. This study aims to examine the influence of sustained hot-fluid injection on stress redistribution, hydraulic-fracture deformation, and fracture stability in thermal-EOR by accounting for coupled thermal, hydraulic, and mechanical interactions. This study develops a fully coupled thermo-poroelastic DDM formulation in which fracture-surface normal and shear displacement discontinuities, together with fluid and heat influx, act as boundary sources to compute time-dependent stresses, pore pressure, and temperature, while internal fracture fluid flow (Poiseuille-based volume balance), heat transport (conduction–advection with rock exchange), and mixed-mode propagation criteria are included. A representative scenario considers an initially isothermal hydraulic fracture grown to 32 m, followed by 12 months of hot-fluid injection, with temperature contrasts of ΔT = 0–100 °C and reduced pumping rate. Results show that the hydraulic-fracture aperture increases under isothermal and modest heating (ΔT = 25 °C) and remains nearly stable near ΔT = 50 °C, but progressively narrows for ΔT = 75–100 °C despite continued injection, indicating potential injectivity decline driven by thermally induced compressive stresses. Hot injection also tightens fracture tips, restricting unintended propagation, and produces pronounced near-fracture stress amplification and re-orientation: minimum principal stress increases by 6 MPa for ΔT = 50 °C and 10 MPa for ΔT = 100 °C, with principal-stress rotation reaching 70–90° in regions adjacent to the fracture plane and with markedly elevated shear stresses that may promote natural-fracture activation. These findings show that temperature effects can directly influence injectivity, fracture containment, and the risk of unintended fracture or natural-fracture activation, underscoring the importance of temperature-aware geomechanical planning and injection-strategy design in field operations. Incorporating these effects into project design can help operators anticipate injectivity decline, improve fracture containment, and reduce geomechanical uncertainty during long-term hot-fluid injection.