Impact of Ultra-Fast Electric Vehicle Charging on Steady-State Voltage Compliance in Radial Distribution Feeders: A Monte Carlo V–Q Sensitivity Framework

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This paper quantifies the steady-state voltage-compliance impact of ultra-fast electric vehicle (EV) charging on the IEEE 33-bus radial distribution feeder. Four practical scenarios are examined by combining two penetration levels (6 and 12 charging points, i.e., ≈20% and ≈40% of PQ buses) with two charger ratings (1 MW and 350 kW per point). Candidate buses for EV station integration are selected through a nodal voltage–reactive sensitivity ranking (∂V/∂Q), prioritizing electrically robust locations. To capture realistic operating uncertainty, a 24-hour quasi-static time-series power-flow assessment is performed using Monte Carlo sampling (N=100), jointly modeling residential-demand variability and stochastic EV charging activation. Across the four cases, the worst-hour minimum voltage (uncompensated) ranges from 0.803 to 0.902 p.u., indicating a persistent under-voltage risk under dense and/or high-power charging. When the expected minimum-hourly voltage violates the 0.95 p.u. limit, a closed-form, sensitivity-guided reactive compensation is computed at the critical bus, and the power flow is re-solved. The proposed mitigation increases the minimum-voltage trajectory by approximately 0.03–0.12 p.u. (about 3.0–12.0% relative to 1 p.u.), substantially reducing the depth and duration of violations. The maximum required reactive support reaches 6.35 Mvar in the most stressed case (12 chargers at 1 MW), whereas limiting the unit charger power to 350 kW lowers both the severity of under-voltage and the compensation requirement. Overall, the Monte Carlo V–Q sensitivity framework provides a lightweight and reproducible tool for probabilistic voltage-compliance assessment and targeted steady-state mitigation in EV-rich radial distribution networks.

Article activity feed