Recognition of EEG Features in Autism Disorder Using SWT and Fisher Linear Discriminant Analysis

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background/Objectives: An ASD diagnosis from EEG is challenging due to non-stationary, low-SNR signals and small cohorts. We propose a compact, interpretable pipeline that pairs a shift-invariant Stationary Wavelet Transform (SWT) with Fisher’s Linear Discriminant (FLDA) as a supervised projection method, delivering band-level insight and subject-wise evaluation suitable for resource-constrained clinics. Methods: EEG from the KAU dataset (eight ASD, eight controls; 256 Hz) was decomposed with SWT (db4). We retained levels 3, 4, and 6 (γ/β/θ) as features. FLDA learned a low-dimensional discriminant subspace, followed by a linear decision rule. Evaluation was conducted using a subject-wise 70/30 split (no subject overlap) with accuracy, precision, recall, F1, and confusion matrices. Results: The β band (Level 4) achieved the best performance (accuracy/precision/recall/F1 = 0.95), followed by γ (0.92) and θ (0.85). Despite partial overlap in FLDA scores, the projection maximized between-class separation relative to within-class variance, yielding robust linear decisions. Conclusions: Unlike earlier FLDA-only pipelines and wavelet–entropy–ANN approaches, our study (1) employs SWT (undecimated, shift-invariant) rather than DWT to stabilize sub-band features on short resting segments, (2) uses FLDA as a supervised projection to mitigate small-sample covariance pathologies before classification, (3) provides band-specific discriminative insight (β > γ/θ) under a subject-wise protocol, and (4) targets low-compute deployment. These choices yield a reproducible baseline with competitive accuracy and clear clinical interpretability. Future work will benchmark kernel/regularized discriminants and lightweight deep models as cohort size and compute permit.

Article activity feed