Assessment of Anesthetic Depth Through EEG Mode Decomposition Using Singular Spectrum Analysis

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

(1) Background: Electroencephalography (EEG) is widely used to monitor the depth of anesthesia; however, conventional Fourier-based analyses are limited in their ability to characterize non-stationary anesthetic-induced EEG dynamics. In this study, we investigated the utility of singular spectrum analysis (SSA) combined with the Hilbert transform for extracting physiologically meaningful EEG features during sevoflurane general anesthesia. (2) Methods: Frontal EEG data from ten patients undergoing sevoflurane anesthesia were analyzed from the maintenance phase through emergence. Using SSA, short EEG segments were decomposed into six intrinsic mode functions (IMFs) without pre-specified basis functions or frequency bands. Hilbert spectral analysis was applied to each IMF to obtain instantaneous frequency and amplitude characteristics. (3) Results: The SSA-based decomposition clearly captured phase-dependent EEG changes, including α spindle activity during maintenance and increasing high-frequency components preceding emergence. Multiple linear regression models incorporating IMF center frequencies and total power demonstrated strong correlations with the bispectral index (BIS), achieving high predictive accuracy (R² = 0.88, MAE < 4). Compared with conventional spectral approaches, SSA provided superior temporal resolution and stable feature extraction for non-stationary EEG signals. (4) Conclusions: These findings indicate that SSA combined with Hilbert analysis is a robust framework for quantitative EEG analysis during general anesthesia and may enhance real-time, individualized assessments of anesthetic depth.

Article activity feed