A Systematic Approach to Evaluate the Use of Chatbots in Educational Contexts: Learning Gains, Engagements and Perceptions

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

As generative artificial intelligence (GenAI) chatbots gain traction in educational settings, a growing number of studies explore their potential for personalized, scalable learning. However, methodological fragmentation has limited the comparability and generalizability of findings across the field. This study proposes a unified, learning analytics–driven framework for evaluating the impact of GenAI chatbots on student learning. Grounded in the collection, analysis, and interpretation of diverse learner data, the framework integrates assessment outcomes, conversational interactions, engagement metrics, and student feedback. We demonstrate its application through a multi-week, quasi-experimental study using a Socratic-style chatbot designed with pedagogical intent. Using clustering techniques and statistical analysis, we identified patterns in student–chatbot interaction and linked them to changes in learning outcomes. This framework provides researchers and educators with a replicable structure for evaluating GenAI interventions and advancing coherence in learning analytics–based educational research.

Article activity feed