Thermal Evaluation of a Water-to-Air Heat Exchanger Combined with Different Roof Configurations for Passive Cooling

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Traditional conservation strategies often prioritize minimizing water use; nevertheless, water can also enhance thermal comfort by incorporating a water-to-air heat exchanger (WAHE) alongside non-direct evaporative and radiant cooling techniques. A WAHE can be installed in features such as ponds, water tanks, or rainwater cisterns. This article assesses the cooling potential of two prototypes of roof ponds and a green roof connected to a WAHE, and the results are compared to a baseline unit featuring a roof that meets California’s energy code standards. Several testing units, measuring 1.35 × 1.35 × 1.35 m, with identical heat characteristics, excluding the roof, were constructed and tested. In the first system, the heat that the green roof could not absorb was transferred to a water reservoir and then dissipated to the outside. The first roof pond prototype features a 0.35 m deep water pond topped with a 0.03 m thick insulating panel and a spray system. The second roof pond variant has an aluminum sheet with a 0.10 m air gap above a 0.25 m deep water pond. The results suggest that combining a WAHE with different roof configurations offers promising benefits while keeping water consumption limited. Notably, when the WAHE is operating, the green roof increase its performance by 47%, the insulated roof pond by 22%, and the roof pond with an aluminum sheet by 13%.

Article activity feed