Long-Term Temperature and Precipitation Trends Across South America, Urban Centers, and Brazilian Biomes

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study examines long-term trends in maximum (Tmax) and minimum (Tmin) near-surface air temperatures and precipitation across South America, focusing on Brazilian biomes and national capitals, using ERA5 reanalysis data for 1979–2024. To isolate the underlying climate signal, seasonal cycles were removed using Seasonal-Trend decomposition based on Loess (STL), which effectively separates short-term variability from long-term trends. Temperature trends were quantified using ordinary least squares (OLS) regression, allowing consistent estimation of linear changes over time, while precipitation trends were assessed using the non-parametric Mann–Kendall test combined with Theil–Sen slope estimation, a robust approach that minimizes the influence of outliers and serial correlation in hydroclimatic data. Results indicate widespread but spatially heterogeneous warming, with Tmax increasing faster than Tmin, consistent with reduced cloudiness and evaporative cooling. A meridional precipitation dipole is evident, with drying across the Cerrado, Pantanal, Caatinga, and Pampa, contrasted by rainfall increases in northern South America linked to ITCZ shifts. The Pantanal emerges as the most vulnerable biome, showing strong warming (+0.51 °C decade−1) and the steepest rainfall decline (−10.45 mm decade−1). Satellite-based fire detections (2013–2024) reveal rising wildfire activity in the Amazon, Pantanal, and Cerrado, aligning with the “hotter and drier” climate regime. In the capitals, persistent Tmax increases suggest enhanced urban heat island effects, with implications for public health and energy demand. Although ERA5 provides coherent spatial coverage, regional biases and sparse in situ observations introduce uncertainties, particularly in the Amazon and Andes, these do not alter the principal finding that the magnitude and persistence of the 1979–2024 warming lie well above the range of interdecadal variability typically associated with the Atlantic Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO). This provides strong evidence that the recent warming is not cyclical but reflects the externally forced secular warming signal. These findings underscore growing fire risk, ecosystem stress, and urban vulnerability, highlighting the urgency of targeted adaptation and resilience strategies under accelerating climate change.

Article activity feed