Forecasting Renewable Scenarios and Uncertainty Analysis in Microgrids for Self-Sufficiency and Reliability: Estimation of Extreme Scenarios for 2040 in El Hierro (Spain)
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study evaluates the feasibility of fully renewable energy systems on El Hierro, the smallest and most isolated Canary Archipelago Island (Spain), contributing to the broader effort to decarbonize the European economy. By 2040, the island’s energy demand is projected to reach 80–110 GWh annually, assuming full economic decarbonization. Currently, El Hierro faces challenges due to its dependence on fossil fuels and inherent variability of renewable sources. To ensure system reliability, the study emphasizes the integration of renewable and storage technologies. Two scenarios are modeled using HOMER Pro 3.18.4 software with probabilistic methods to capture variability in generation and demand. The first scenario, BAU, represents the current system enhanced with electric vehicles. While the second, Efficiency, incorporates energy efficiency improvements and collective mobility policies. Both prioritize electrification and derive an optimal generation mix based on economic and technical constraints, to minimize Levelized Cost Of Energy (LCOE). The approach takes advantage of El Hierro’s abundant solar and wind resources, complemented by reversible pumped hydro storage and megabatteries. Fully renewable systems can meet demand reliably, producing about 30% energy surplus with an LCOE of roughly 10 c€/kWh. The final BAU scenario includes 53 MW of solar PV, 16 MW of wind, and a storage system of 40 MW–800 MWh. The Efficiency scenario has 42 MW of solar PV, 11.5 MW of wind, and 35 MW–550 MWh of storage. Uncertainty analysis indicates that maintaining system reliability requires an approximate 10% increase in both installed capacity and costs. This translates into an additional 7 MW of solar PV and 6 MW–23.5 MWh of batteries in the BAU, and 6 MW and 4 MW–16 MWh in the Efficiency.