Influence of Nucleating Agents on the Crystallization, Thermal, and Mechanical Properties of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HBHHx)

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This study investigates the impact of various nucleating agents on the crystallization behavior, thermal stability, and mechanical properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P3HBHHx) with 6 mol% 3-hydroxyhexanoate (3HHx) units. Nucleating agents, including boron nitride (BN), poly(3-hydroxybutyrate) (PHB), talc, ultrafine cellulose (UFC), and an organic potassium salt (LAK), were incorporated to enhance the crystallization performance. Differential scanning calorimetry (DSC) revealed that BN and PHB significantly increased the crystallization temperature and reduced the crystallization time by half, with BN exhibiting the highest nucleation efficiency. Isothermal kinetics modeled using the Avrami and Lauritzen–Hoffman theories confirmed faster crystallization and reduced nucleation barriers in nucleated samples. Polarized optical microscopy (POM) revealed that the nucleating agents altered the spherulite morphology and increased the growth rates. Under fast cooling, only BN induced crystallization, confirming its superior nucleation activity. Thermogravimetric analysis (TGA) indicated minimal changes in thermal stability, while mechanical testing showed a slight reduction in stiffness without compromising the tensile strength. Overall, BN emerged as the most effective nucleating agent for enhancing the P3HBHHx crystallization kinetics, providing a promising strategy for improving processing efficiency and reducing the cycle times in industrial applications.

Article activity feed