The Effects of Multi-Scenario Land Use Change on the Water Conservation in the Agro-Pastoral Ecotone of Northern China: A Case Study of Bashang Region, Zhangjiakou City

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Water resource management is crucial for sustainable agricultural and ecological development, particularly in regions with complex land-use patterns and sensitive eco-systems. The Bashang region of Zhangjiakou city, located in the agro-pastoral ecotone of northern China, is an ecologically fragile area that is currently undergoing significant land use and climate changes. Despite the importance of understanding the interplay between land use, climate change, and water conservation, few studies have comprehensively evaluated their combined effects on regional water resources. This study addresses this gap by investigating the spatiotemporal changes in the water yield (WY) and water conservation capacity (WCC) of the Bashang region under different land use and climate scenarios for the year 2035. This research employs the FLUS model to predict the future land use and the InVEST model to estimate the WY and WCC under a natural development scenario (NDS), an agricultural production scenario (APS), an ecological protection scenario (EPS), and a land planning scenario (LPS). The results reveal that the WCC is primarily influenced by precipitation, land use, and the topography. This study finds that scenarios which focus on ecological protection and land use optimization, such as the EPS and LPS, significantly enhance the water conservation capacity of the study region Notably, the LPS scenario, which limits urban expansion and increases the amount of ecological land, provides the best balance between the water yield and conservation. The findings highlight the need for integrated approaches to land use and water resource management, particularly in agro-pastoral transitional zones. The unique contribution of this research lies in its comprehensive modeling approach, which combines land use, climate data, and water resource analysis, and which provides valuable insights for sustainable land and water management strategies.

Article activity feed