Age-Related Differences in Experiences With Social Distancing at the Onset of the COVID-19 Pandemic: A Computational and Content Analytic Investigation of Natural Language From a Social Media Survey
This article has been Reviewed by the following groups
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
- Evaluated articles (ScreenIT)
Abstract
As COVID-19 poses different levels of threat to people of different ages, health communication regarding prevention measures such as social distancing and isolation may be strengthened by understanding the unique experiences of various age groups.
Objective
The aim of this study was to examine how people of different ages (1) experienced the impact of the COVID-19 pandemic and (2) their respective rates and reasons for compliance or noncompliance with social distancing and isolation health guidance.
Methods
We fielded a survey on social media early in the pandemic to examine the emotional impact of COVID-19 and individuals’ rates and reasons for noncompliance with public health guidance, using computational and content analytic methods of linguistic analysis.
Results
A total of 17,287 participants were surveyed. The majority (n=13,183, 76.3%) were from the United States. Younger (18-31 years), middle-aged (32-44 years and 45-64 years), and older (≥65 years) individuals significantly varied in how they described the impact of COVID-19 on their lives, including their emotional experience, self-focused attention, and topical concerns. Younger individuals were more emotionally negative and self-focused, while middle-aged people were other-focused and concerned with family. The oldest and most at-risk group was most concerned with health-related terms but were lower in anxiety (use of fewer anxiety-related terms) and higher in the use of emotionally positive terms than the other less at-risk age groups. While all groups discussed topics such as acquiring essential supplies, they differentially experienced the impact of school closures and limited social interactions. We also found relatively high rates of noncompliance with COVID-19 prevention measures, such as social distancing and self-isolation, with younger people being more likely to be noncompliant than older people (P<.001). Among the 43.1% (n=7456) of respondents who did not fully comply with health orders, people differed substantially in the reasons they gave for noncompliance. The most common reason for noncompliance was not being able to afford to miss work (n=4273, 57.3%). While work obligations proved challenging for participants across ages, younger people struggled more to find adequate space to self-isolate and manage their mental and physical health; middle-aged people had more concerns regarding childcare; and older people perceived themselves as being able to take sufficient precautions.
Conclusions
Analysis of natural language can provide insight into rapidly developing public health challenges like the COVID-19 pandemic, uncovering individual differences in emotional experiences and health-related behaviors. In this case, our analyses revealed significant differences between different age groups in feelings about and responses to public health orders aimed to mitigate the spread of COVID-19. To improve public compliance with health orders as the pandemic continues, health communication strategies could be made more effective by being tailored to these age-related differences.
Article activity feed
-
-
SciScore for 10.1101/2020.04.08.20057067: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We found bar graphs of continuous data. We recommend …
SciScore for 10.1101/2020.04.08.20057067: (What is this?)
Please note, not all rigor criteria are appropriate for all manuscripts.
Table 1: Rigor
Institutional Review Board Statement not detected. Randomization not detected. Blinding not detected. Power Analysis not detected. Sex as a biological variable not detected. Table 2: Resources
No key resources detected.
Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).
Results from LimitationRecognizer: An explicit section about the limitations of the techniques employed in this study was not found. We encourage authors to address study limitations.Results from TrialIdentifier: No clinical trial numbers were referenced.
Results from Barzooka: We found bar graphs of continuous data. We recommend replacing bar graphs with more informative graphics, as many different datasets can lead to the same bar graph. The actual data may suggest different conclusions from the summary statistics. For more information, please see Weissgerber et al (2015).
Results from JetFighter: We did not find any issues relating to colormaps.
Results from rtransparent:- Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
- Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
- No protocol registration statement was detected.
-
-
