Modeling COVID-19 Latent Prevalence to Assess a Public Health Intervention at a State and Regional Scale: Retrospective Cohort Study

This article has been Reviewed by the following groups

Read the full article See related articles

Abstract

Emergence of the coronavirus disease (COVID-19) caught the world off guard and unprepared, initiating a global pandemic. In the absence of evidence, individual communities had to take timely action to reduce the rate of disease spread and avoid overburdening their health care systems. Although a few predictive models have been published to guide these decisions, most have not taken into account spatial differences and have included assumptions that do not match the local realities. Access to reliable information that is adapted to local context is critical for policy makers to make informed decisions during a rapidly evolving pandemic.

Objective

The goal of this study was to develop an adapted susceptible-infected-removed (SIR) model to predict the trajectory of the COVID-19 pandemic in North Carolina and the Charlotte Metropolitan Region, and to incorporate the effect of a public health intervention to reduce disease spread while accounting for unique regional features and imperfect detection.

Methods

Three SIR models were fit to infection prevalence data from North Carolina and the greater Charlotte Region and then rigorously compared. One of these models (SIR-int) accounted for a stay-at-home intervention and imperfect detection of COVID-19 cases. We computed longitudinal total estimates of the susceptible, infected, and removed compartments of both populations, along with other pandemic characteristics such as the basic reproduction number.

Results

Prior to March 26, disease spread was rapid at the pandemic onset with the Charlotte Region doubling time of 2.56 days (95% CI 2.11-3.25) and in North Carolina 2.94 days (95% CI 2.33-4.00). Subsequently, disease spread significantly slowed with doubling times increased in the Charlotte Region to 4.70 days (95% CI 3.77-6.22) and in North Carolina to 4.01 days (95% CI 3.43-4.83). Reflecting spatial differences, this deceleration favored the greater Charlotte Region compared to North Carolina as a whole. A comparison of the efficacy of intervention, defined as 1 – the hazard ratio of infection, gave 0.25 for North Carolina and 0.43 for the Charlotte Region. In addition, early in the pandemic, the initial basic SIR model had good fit to the data; however, as the pandemic and local conditions evolved, the SIR-int model emerged as the model with better fit.

Conclusions

Using local data and continuous attention to model adaptation, our findings have enabled policy makers, public health officials, and health systems to proactively plan capacity and evaluate the impact of a public health intervention. Our SIR-int model for estimated latent prevalence was reasonably flexible, highly accurate, and demonstrated efficacy of a stay-at-home order at both the state and regional level. Our results highlight the importance of incorporating local context into pandemic forecast modeling, as well as the need to remain vigilant and informed by the data as we enter into a critical period of the outbreak.

Article activity feed

  1. SciScore for 10.1101/2020.04.14.20063420: (What is this?)

    Please note, not all rigor criteria are appropriate for all manuscripts.

    Table 1: Rigor

    NIH rigor criteria are not applicable to paper type.

    Table 2: Resources

    No key resources detected.


    Results from OddPub: We did not detect open data. We also did not detect open code. Researchers are encouraged to share open data when possible (see Nature blog).


    Results from LimitationRecognizer: We detected the following sentences addressing limitations in the study:
    Limitations: There are limitations to the SIR model. Some take issue with its deterministic form, although one could fit a Bayesian SIR model to make it stochastic. Perhaps the biggest limitation is that β and γ could be time-varying due to different forms of intervention (enhanced personal protective measures and social distancing). However, as we have shown here, we can easily leverage pre-existing R functions to incorporate a changepoint that modifies the probability of transmission to acknowledge an important public health intervention. It is also possible to customize the SIR model within R to define more advanced and different transition processes, and then parameterize and simulate those models to accommodate insights from additional research. In this way, one can also examine “what if” scenarios or assess model robustness through sensitivity analysis. The SIR model is simple to understand and easier to fit, as opposed to other deterministic compartmental models (e.g., SEIR) or stochastic individual contact models [31]. However, these more advanced models will play an increasingly important role in forecasting and understanding the dynamics of this evolving pandemic. The lack of widespread COVID-19 testing, both for symptomatic and asymptomatic individuals, presents a major limitation of unknown scale and implications to forecasting models [32, 33]. Data sources are known to undercount cases, only including asymptomatic illness by chance, and to define cases inconsiste...

    Results from TrialIdentifier: No clinical trial numbers were referenced.


    Results from Barzooka: We did not find any issues relating to the usage of bar graphs.


    Results from JetFighter: We did not find any issues relating to colormaps.


    Results from rtransparent:
    • Thank you for including a conflict of interest statement. Authors are encouraged to include this statement when submitting to a journal.
    • Thank you for including a funding statement. Authors are encouraged to include this statement when submitting to a journal.
    • No protocol registration statement was detected.

    About SciScore

    SciScore is an automated tool that is designed to assist expert reviewers by finding and presenting formulaic information scattered throughout a paper in a standard, easy to digest format. SciScore checks for the presence and correctness of RRIDs (research resource identifiers), and for rigor criteria such as sex and investigator blinding. For details on the theoretical underpinning of rigor criteria and the tools shown here, including references cited, please follow this link.