Detecting Linear Dichroism with Atomic Resolution
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
X-ray linear dichroism has been pivotal for probing electronic anisotropies, but its inherent limited spatial resolution precludes atomic-scale investigations of orbital polarization. Here we introduce a versatile electron linear dichroism methodology in scanning transmission electron microscopy that overcomes these constraints. By exploiting momentum-transfer-dependent electron energy-loss spectroscopy with an atomic-sized probe, we directly visualize orbital occupation at individual atomic columns in real space. Using strained La0.7Sr0.3MnO3 thin films as a model system, we resolve the Mn-3d eg orbital polarization with sub-angstrom precision. We show that compressive strain stabilizes 3z2-r2 occupation while tensile strain favors x2-y2. These results validate our approach against established X-ray measurements while achieving the ultimate single atomic-column sensitivity. We further demonstrate two optimized signal extraction protocols that adapt to experimental constraints without compromising sensitivity. This generalizable platform opens unprecedented opportunities to study symmetry-breaking phenomena at individual defects, interfaces, and in quantum materials where atomic-scale electronic anisotropy governs emergent functionality.