Development and Evaluation of HopeBot: an LLM-based chatbot for structured and interactive PHQ-9 depression screening

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Static tools like the Patient Health Questionnaire-9 (PHQ-9) effectively screen depression but lack interactivity and adaptability. We developed HopeBot, a chatbot powered by a large language model (LLM) that administers the PHQ-9 using retrieval-augmented generation and real-time clarification. In a within-subject study, 132 adults in the United Kingdom and China completed both self-administered and chatbot versions. Scores demonstrated strong agreement (ICC = 0.91; 45% identical). Among 75 participants providing comparative feedback, 71% reported greater trust in the chatbot, highlighting clearer structure, interpretive guidance, and a supportive tone. Mean ratings (0–10) were 8.4 for comfort, 7.7 for voice clarity, 7.6 for handling sensitive topics, and 7.4 for recommendation helpfulness; the latter varied significantly by employment status and prior mental-health service use (p < 0.05). Overall, 87.1% expressed willingness to reuse or recommend HopeBot. These findings demonstrate voice-based LLM chatbots can feasibly serve as scalable, low-burden adjuncts for routine depression screening.

Article activity feed