In situ and ex situ analysis of the reciprocating sliding wear behavior of cold sprayed CrMnCoFeNi Cantor HEA coatings in dry air and ambient air conditions
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study examined and compared the tribological properties of a cold-sprayed CrMnCoFeNi high entropy alloy (Cantor alloy) coating under ambient and dry air conditions. Tribological testing was conducted using an in situ tribometer equipped with video microscopy, allowing real-time monitoring of the evolution of the sliding interfaces through a transparent sapphire counterface. This experimental setup provided the opportunity to observe phenomena that would otherwise remain concealed between the contacting bodies. The wear rate was 1.8 ± 0.5×10⁻⁴ mm³/Nm in ambient air and 7.5 ± 0.7×10⁻⁴ mm³/Nm in dry air. In situ tribometry allowed third body activities to be observed and correlated with the wear results. In dry air, the velocity accommodation mode was characterized by interfacial sliding of a static transfer film against the wear track, resulting in a stable steady-state coefficient of friction (CoF) of 0.5. In contrast, ambient air conditions led to an average CoF of 0.8, with fluctuations attributed to plastic shearing of the transfer film observed in situ. The higher humidity in ambient air inhibited cold welding of wear particles, resulting in a less stable transfer film that underwent removal or extrusion events, which were associated with sudden drops in CoF. Additionally, a "metal debris" oxide formation mechanism was observed in ambient air, contributing to the formation of a protective tribofilm and a reduction in the wear rate. In dry air, the "oxidation-scrape-reoxidation" mechanism dominated, facilitated by the absence of adsorbed water droplets. This resulted in an increased wear rate under dry conditions.