Optimization of Cold Gas Dynamic Spray Coatings Using Agglomerated Al–Zn–TiO2 Powders on Steel

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Cold gas dynamic spraying (CGDS) enables the production of protective coatings without melting or oxidation. In this study, Al–Zn–TiO2 composite powders were prepared by wet agglomeration with binders and by dry mechanical mixing, and deposited onto mild steel substrates. COMSOL simulations of gas dynamics and particle acceleration identified optimal parameters (0.6 MPa, 600 °C, 15 mm, 90°), which were then validated experimentally. Coatings formed under these conditions exhibited dense microstructures, minimal porosity (~0.5%), and continuous, defect-free interfaces with the substrate. SEM and XRD confirmed solid-state bonding without new phase formation. Corrosion tests in 3.5% NaCl revealed a tenfold reduction in corrosion current density compared to bare steel, resulting from synergistic sacrificial (Zn), barrier (Al), and reinforcing/passivating (TiO2) effects. Tribological tests demonstrated reduced friction (CoF ≈ 0.4–0.5) and wear volume. Compared with reported Al- or Zn-based cold- and thermal-sprayed coatings, the optimized Al–Zn–TiO2 system shows superior performance, highlighting its potential for industrial anti-corrosion and wear-resistant applications.

Article activity feed