Anyonization of bosons
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Anyons are low-dimensional quasiparticles that obey fractional statistics, hence interpolating between bosons and fermions. In two dimensions, they exist as elementary excitations of fractional quantum Hall states and they are believed to enable topological quantum computing. One-dimensional (1D) anyons have been theoretically proposed, but their experimental realization has proven to be difficult. Here, we observe emergent anyonic correlations in a 1D strongly-interacting quantum gas, resulting from the phenomenon of spin-charge separation. A mobile impurity provides the necessary spin degree of freedom to engineer anyonic correlations in the charge sector and simultaneously acts as a probe to reveal these correlations. Starting with bosons, we tune the statistical phase to transmute bosons via anyons to fermions and observe an asymmetric momentum distribution, hallmark of anyonic correlations. Going beyond equilibrium conditions, we observe dynamical fermionization of the anyons. Our work opens up the door to the exploration of nonequilibrium anyonic phenomena in a highly controllable setting.